Solve for x
x=\frac{\sqrt{23}}{6}+2\approx 2.799305254
x=-\frac{\sqrt{23}}{6}+2\approx 1.200694746
Graph
Share
Copied to clipboard
36x^{2}-132x+121=12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-11\right)^{2}.
36x^{2}-132x+121-12x=0
Subtract 12x from both sides.
36x^{2}-144x+121=0
Combine -132x and -12x to get -144x.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 36\times 121}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -144 for b, and 121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-144\right)±\sqrt{20736-4\times 36\times 121}}{2\times 36}
Square -144.
x=\frac{-\left(-144\right)±\sqrt{20736-144\times 121}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-144\right)±\sqrt{20736-17424}}{2\times 36}
Multiply -144 times 121.
x=\frac{-\left(-144\right)±\sqrt{3312}}{2\times 36}
Add 20736 to -17424.
x=\frac{-\left(-144\right)±12\sqrt{23}}{2\times 36}
Take the square root of 3312.
x=\frac{144±12\sqrt{23}}{2\times 36}
The opposite of -144 is 144.
x=\frac{144±12\sqrt{23}}{72}
Multiply 2 times 36.
x=\frac{12\sqrt{23}+144}{72}
Now solve the equation x=\frac{144±12\sqrt{23}}{72} when ± is plus. Add 144 to 12\sqrt{23}.
x=\frac{\sqrt{23}}{6}+2
Divide 144+12\sqrt{23} by 72.
x=\frac{144-12\sqrt{23}}{72}
Now solve the equation x=\frac{144±12\sqrt{23}}{72} when ± is minus. Subtract 12\sqrt{23} from 144.
x=-\frac{\sqrt{23}}{6}+2
Divide 144-12\sqrt{23} by 72.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
The equation is now solved.
36x^{2}-132x+121=12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-11\right)^{2}.
36x^{2}-132x+121-12x=0
Subtract 12x from both sides.
36x^{2}-144x+121=0
Combine -132x and -12x to get -144x.
36x^{2}-144x=-121
Subtract 121 from both sides. Anything subtracted from zero gives its negation.
\frac{36x^{2}-144x}{36}=-\frac{121}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{144}{36}\right)x=-\frac{121}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-4x=-\frac{121}{36}
Divide -144 by 36.
x^{2}-4x+\left(-2\right)^{2}=-\frac{121}{36}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{121}{36}+4
Square -2.
x^{2}-4x+4=\frac{23}{36}
Add -\frac{121}{36} to 4.
\left(x-2\right)^{2}=\frac{23}{36}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{23}{36}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{23}}{6} x-2=-\frac{\sqrt{23}}{6}
Simplify.
x=\frac{\sqrt{23}}{6}+2 x=-\frac{\sqrt{23}}{6}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}