Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6^{2}x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Expand \left(6x\right)^{2}.
36x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Calculate 6 to the power of 2 and get 36.
36x^{2}+7^{2}x^{2}+\left(6x\right)^{2}=1
Expand \left(7x\right)^{2}.
36x^{2}+49x^{2}+\left(6x\right)^{2}=1
Calculate 7 to the power of 2 and get 49.
85x^{2}+\left(6x\right)^{2}=1
Combine 36x^{2} and 49x^{2} to get 85x^{2}.
85x^{2}+6^{2}x^{2}=1
Expand \left(6x\right)^{2}.
85x^{2}+36x^{2}=1
Calculate 6 to the power of 2 and get 36.
121x^{2}=1
Combine 85x^{2} and 36x^{2} to get 121x^{2}.
121x^{2}-1=0
Subtract 1 from both sides.
\left(11x-1\right)\left(11x+1\right)=0
Consider 121x^{2}-1. Rewrite 121x^{2}-1 as \left(11x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{11} x=-\frac{1}{11}
To find equation solutions, solve 11x-1=0 and 11x+1=0.
6^{2}x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Expand \left(6x\right)^{2}.
36x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Calculate 6 to the power of 2 and get 36.
36x^{2}+7^{2}x^{2}+\left(6x\right)^{2}=1
Expand \left(7x\right)^{2}.
36x^{2}+49x^{2}+\left(6x\right)^{2}=1
Calculate 7 to the power of 2 and get 49.
85x^{2}+\left(6x\right)^{2}=1
Combine 36x^{2} and 49x^{2} to get 85x^{2}.
85x^{2}+6^{2}x^{2}=1
Expand \left(6x\right)^{2}.
85x^{2}+36x^{2}=1
Calculate 6 to the power of 2 and get 36.
121x^{2}=1
Combine 85x^{2} and 36x^{2} to get 121x^{2}.
x^{2}=\frac{1}{121}
Divide both sides by 121.
x=\frac{1}{11} x=-\frac{1}{11}
Take the square root of both sides of the equation.
6^{2}x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Expand \left(6x\right)^{2}.
36x^{2}+\left(7x\right)^{2}+\left(6x\right)^{2}=1
Calculate 6 to the power of 2 and get 36.
36x^{2}+7^{2}x^{2}+\left(6x\right)^{2}=1
Expand \left(7x\right)^{2}.
36x^{2}+49x^{2}+\left(6x\right)^{2}=1
Calculate 7 to the power of 2 and get 49.
85x^{2}+\left(6x\right)^{2}=1
Combine 36x^{2} and 49x^{2} to get 85x^{2}.
85x^{2}+6^{2}x^{2}=1
Expand \left(6x\right)^{2}.
85x^{2}+36x^{2}=1
Calculate 6 to the power of 2 and get 36.
121x^{2}=1
Combine 85x^{2} and 36x^{2} to get 121x^{2}.
121x^{2}-1=0
Subtract 1 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 121\left(-1\right)}}{2\times 121}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 121 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 121\left(-1\right)}}{2\times 121}
Square 0.
x=\frac{0±\sqrt{-484\left(-1\right)}}{2\times 121}
Multiply -4 times 121.
x=\frac{0±\sqrt{484}}{2\times 121}
Multiply -484 times -1.
x=\frac{0±22}{2\times 121}
Take the square root of 484.
x=\frac{0±22}{242}
Multiply 2 times 121.
x=\frac{1}{11}
Now solve the equation x=\frac{0±22}{242} when ± is plus. Reduce the fraction \frac{22}{242} to lowest terms by extracting and canceling out 22.
x=-\frac{1}{11}
Now solve the equation x=\frac{0±22}{242} when ± is minus. Reduce the fraction \frac{-22}{242} to lowest terms by extracting and canceling out 22.
x=\frac{1}{11} x=-\frac{1}{11}
The equation is now solved.