Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-4x+7-3x-9
Combine 6x^{2} and 2x^{2} to get 8x^{2}.
8x^{2}-7x+7-9
Combine -4x and -3x to get -7x.
8x^{2}-7x-2
Subtract 9 from 7 to get -2.
factor(8x^{2}-4x+7-3x-9)
Combine 6x^{2} and 2x^{2} to get 8x^{2}.
factor(8x^{2}-7x+7-9)
Combine -4x and -3x to get -7x.
factor(8x^{2}-7x-2)
Subtract 9 from 7 to get -2.
8x^{2}-7x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 8\left(-2\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 8\left(-2\right)}}{2\times 8}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-7\right)±\sqrt{49+64}}{2\times 8}
Multiply -32 times -2.
x=\frac{-\left(-7\right)±\sqrt{113}}{2\times 8}
Add 49 to 64.
x=\frac{7±\sqrt{113}}{2\times 8}
The opposite of -7 is 7.
x=\frac{7±\sqrt{113}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{113}+7}{16}
Now solve the equation x=\frac{7±\sqrt{113}}{16} when ± is plus. Add 7 to \sqrt{113}.
x=\frac{7-\sqrt{113}}{16}
Now solve the equation x=\frac{7±\sqrt{113}}{16} when ± is minus. Subtract \sqrt{113} from 7.
8x^{2}-7x-2=8\left(x-\frac{\sqrt{113}+7}{16}\right)\left(x-\frac{7-\sqrt{113}}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+\sqrt{113}}{16} for x_{1} and \frac{7-\sqrt{113}}{16} for x_{2}.