Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36x^{2}+84x+49-12\left(6x+7\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+7\right)^{2}.
36x^{2}+84x+49-72x-84+36=0
Use the distributive property to multiply -12 by 6x+7.
36x^{2}+12x+49-84+36=0
Combine 84x and -72x to get 12x.
36x^{2}+12x-35+36=0
Subtract 84 from 49 to get -35.
36x^{2}+12x+1=0
Add -35 and 36 to get 1.
a+b=12 ab=36\times 1=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 36x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=6 b=6
The solution is the pair that gives sum 12.
\left(36x^{2}+6x\right)+\left(6x+1\right)
Rewrite 36x^{2}+12x+1 as \left(36x^{2}+6x\right)+\left(6x+1\right).
6x\left(6x+1\right)+6x+1
Factor out 6x in 36x^{2}+6x.
\left(6x+1\right)\left(6x+1\right)
Factor out common term 6x+1 by using distributive property.
\left(6x+1\right)^{2}
Rewrite as a binomial square.
x=-\frac{1}{6}
To find equation solution, solve 6x+1=0.
36x^{2}+84x+49-12\left(6x+7\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+7\right)^{2}.
36x^{2}+84x+49-72x-84+36=0
Use the distributive property to multiply -12 by 6x+7.
36x^{2}+12x+49-84+36=0
Combine 84x and -72x to get 12x.
36x^{2}+12x-35+36=0
Subtract 84 from 49 to get -35.
36x^{2}+12x+1=0
Add -35 and 36 to get 1.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 12 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 36}}{2\times 36}
Square 12.
x=\frac{-12±\sqrt{144-144}}{2\times 36}
Multiply -4 times 36.
x=\frac{-12±\sqrt{0}}{2\times 36}
Add 144 to -144.
x=-\frac{12}{2\times 36}
Take the square root of 0.
x=-\frac{12}{72}
Multiply 2 times 36.
x=-\frac{1}{6}
Reduce the fraction \frac{-12}{72} to lowest terms by extracting and canceling out 12.
36x^{2}+84x+49-12\left(6x+7\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+7\right)^{2}.
36x^{2}+84x+49-72x-84+36=0
Use the distributive property to multiply -12 by 6x+7.
36x^{2}+12x+49-84+36=0
Combine 84x and -72x to get 12x.
36x^{2}+12x-35+36=0
Subtract 84 from 49 to get -35.
36x^{2}+12x+1=0
Add -35 and 36 to get 1.
36x^{2}+12x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{36x^{2}+12x}{36}=-\frac{1}{36}
Divide both sides by 36.
x^{2}+\frac{12}{36}x=-\frac{1}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{1}{3}x=-\frac{1}{36}
Reduce the fraction \frac{12}{36} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{36}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{-1+1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=0
Add -\frac{1}{36} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=0
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+\frac{1}{6}=0 x+\frac{1}{6}=0
Simplify.
x=-\frac{1}{6} x=-\frac{1}{6}
Subtract \frac{1}{6} from both sides of the equation.
x=-\frac{1}{6}
The equation is now solved. Solutions are the same.