Solve for x
x=-\frac{3}{10}=-0.3
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
6x^{2}-13x-15=-2x\left(7x+5\right)+x-12
Use the distributive property to multiply 6x+5 by x-3 and combine like terms.
6x^{2}-13x-15=-14x^{2}-10x+x-12
Use the distributive property to multiply -2x by 7x+5.
6x^{2}-13x-15=-14x^{2}-9x-12
Combine -10x and x to get -9x.
6x^{2}-13x-15+14x^{2}=-9x-12
Add 14x^{2} to both sides.
20x^{2}-13x-15=-9x-12
Combine 6x^{2} and 14x^{2} to get 20x^{2}.
20x^{2}-13x-15+9x=-12
Add 9x to both sides.
20x^{2}-4x-15=-12
Combine -13x and 9x to get -4x.
20x^{2}-4x-15+12=0
Add 12 to both sides.
20x^{2}-4x-3=0
Add -15 and 12 to get -3.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 20\left(-3\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 20\left(-3\right)}}{2\times 20}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-80\left(-3\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 20}
Multiply -80 times -3.
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 20}
Add 16 to 240.
x=\frac{-\left(-4\right)±16}{2\times 20}
Take the square root of 256.
x=\frac{4±16}{2\times 20}
The opposite of -4 is 4.
x=\frac{4±16}{40}
Multiply 2 times 20.
x=\frac{20}{40}
Now solve the equation x=\frac{4±16}{40} when ± is plus. Add 4 to 16.
x=\frac{1}{2}
Reduce the fraction \frac{20}{40} to lowest terms by extracting and canceling out 20.
x=-\frac{12}{40}
Now solve the equation x=\frac{4±16}{40} when ± is minus. Subtract 16 from 4.
x=-\frac{3}{10}
Reduce the fraction \frac{-12}{40} to lowest terms by extracting and canceling out 4.
x=\frac{1}{2} x=-\frac{3}{10}
The equation is now solved.
6x^{2}-13x-15=-2x\left(7x+5\right)+x-12
Use the distributive property to multiply 6x+5 by x-3 and combine like terms.
6x^{2}-13x-15=-14x^{2}-10x+x-12
Use the distributive property to multiply -2x by 7x+5.
6x^{2}-13x-15=-14x^{2}-9x-12
Combine -10x and x to get -9x.
6x^{2}-13x-15+14x^{2}=-9x-12
Add 14x^{2} to both sides.
20x^{2}-13x-15=-9x-12
Combine 6x^{2} and 14x^{2} to get 20x^{2}.
20x^{2}-13x-15+9x=-12
Add 9x to both sides.
20x^{2}-4x-15=-12
Combine -13x and 9x to get -4x.
20x^{2}-4x=-12+15
Add 15 to both sides.
20x^{2}-4x=3
Add -12 and 15 to get 3.
\frac{20x^{2}-4x}{20}=\frac{3}{20}
Divide both sides by 20.
x^{2}+\left(-\frac{4}{20}\right)x=\frac{3}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-\frac{1}{5}x=\frac{3}{20}
Reduce the fraction \frac{-4}{20} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{3}{20}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{3}{20}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{4}{25}
Add \frac{3}{20} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{10}\right)^{2}=\frac{4}{25}
Factor x^{2}-\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{10}=\frac{2}{5} x-\frac{1}{10}=-\frac{2}{5}
Simplify.
x=\frac{1}{2} x=-\frac{3}{10}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}