Evaluate
10w^{2}-4w-3
Factor
10\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
Share
Copied to clipboard
10w^{2}-w-5-3w+2
Combine 6w^{2} and 4w^{2} to get 10w^{2}.
10w^{2}-4w-5+2
Combine -w and -3w to get -4w.
10w^{2}-4w-3
Add -5 and 2 to get -3.
factor(10w^{2}-w-5-3w+2)
Combine 6w^{2} and 4w^{2} to get 10w^{2}.
factor(10w^{2}-4w-5+2)
Combine -w and -3w to get -4w.
factor(10w^{2}-4w-3)
Add -5 and 2 to get -3.
10w^{2}-4w-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-3\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-3\right)}}{2\times 10}
Square -4.
w=\frac{-\left(-4\right)±\sqrt{16-40\left(-3\right)}}{2\times 10}
Multiply -4 times 10.
w=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 10}
Multiply -40 times -3.
w=\frac{-\left(-4\right)±\sqrt{136}}{2\times 10}
Add 16 to 120.
w=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 10}
Take the square root of 136.
w=\frac{4±2\sqrt{34}}{2\times 10}
The opposite of -4 is 4.
w=\frac{4±2\sqrt{34}}{20}
Multiply 2 times 10.
w=\frac{2\sqrt{34}+4}{20}
Now solve the equation w=\frac{4±2\sqrt{34}}{20} when ± is plus. Add 4 to 2\sqrt{34}.
w=\frac{\sqrt{34}}{10}+\frac{1}{5}
Divide 4+2\sqrt{34} by 20.
w=\frac{4-2\sqrt{34}}{20}
Now solve the equation w=\frac{4±2\sqrt{34}}{20} when ± is minus. Subtract 2\sqrt{34} from 4.
w=-\frac{\sqrt{34}}{10}+\frac{1}{5}
Divide 4-2\sqrt{34} by 20.
10w^{2}-4w-3=10\left(w-\left(\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)\left(w-\left(-\frac{\sqrt{34}}{10}+\frac{1}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{5}+\frac{\sqrt{34}}{10} for x_{1} and \frac{1}{5}-\frac{\sqrt{34}}{10} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}