Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

12v^{2}-12v-9=7v^{2}-38-33
Use the distributive property to multiply 6v-9 by 2v+1 and combine like terms.
12v^{2}-12v-9=7v^{2}-71
Subtract 33 from -38 to get -71.
12v^{2}-12v-9-7v^{2}=-71
Subtract 7v^{2} from both sides.
5v^{2}-12v-9=-71
Combine 12v^{2} and -7v^{2} to get 5v^{2}.
5v^{2}-12v-9+71=0
Add 71 to both sides.
5v^{2}-12v+62=0
Add -9 and 71 to get 62.
v=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 62}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -12 for b, and 62 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 62}}{2\times 5}
Square -12.
v=\frac{-\left(-12\right)±\sqrt{144-20\times 62}}{2\times 5}
Multiply -4 times 5.
v=\frac{-\left(-12\right)±\sqrt{144-1240}}{2\times 5}
Multiply -20 times 62.
v=\frac{-\left(-12\right)±\sqrt{-1096}}{2\times 5}
Add 144 to -1240.
v=\frac{-\left(-12\right)±2\sqrt{274}i}{2\times 5}
Take the square root of -1096.
v=\frac{12±2\sqrt{274}i}{2\times 5}
The opposite of -12 is 12.
v=\frac{12±2\sqrt{274}i}{10}
Multiply 2 times 5.
v=\frac{12+2\sqrt{274}i}{10}
Now solve the equation v=\frac{12±2\sqrt{274}i}{10} when ± is plus. Add 12 to 2i\sqrt{274}.
v=\frac{6+\sqrt{274}i}{5}
Divide 12+2i\sqrt{274} by 10.
v=\frac{-2\sqrt{274}i+12}{10}
Now solve the equation v=\frac{12±2\sqrt{274}i}{10} when ± is minus. Subtract 2i\sqrt{274} from 12.
v=\frac{-\sqrt{274}i+6}{5}
Divide 12-2i\sqrt{274} by 10.
v=\frac{6+\sqrt{274}i}{5} v=\frac{-\sqrt{274}i+6}{5}
The equation is now solved.
12v^{2}-12v-9=7v^{2}-38-33
Use the distributive property to multiply 6v-9 by 2v+1 and combine like terms.
12v^{2}-12v-9=7v^{2}-71
Subtract 33 from -38 to get -71.
12v^{2}-12v-9-7v^{2}=-71
Subtract 7v^{2} from both sides.
5v^{2}-12v-9=-71
Combine 12v^{2} and -7v^{2} to get 5v^{2}.
5v^{2}-12v=-71+9
Add 9 to both sides.
5v^{2}-12v=-62
Add -71 and 9 to get -62.
\frac{5v^{2}-12v}{5}=-\frac{62}{5}
Divide both sides by 5.
v^{2}-\frac{12}{5}v=-\frac{62}{5}
Dividing by 5 undoes the multiplication by 5.
v^{2}-\frac{12}{5}v+\left(-\frac{6}{5}\right)^{2}=-\frac{62}{5}+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-\frac{12}{5}v+\frac{36}{25}=-\frac{62}{5}+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
v^{2}-\frac{12}{5}v+\frac{36}{25}=-\frac{274}{25}
Add -\frac{62}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(v-\frac{6}{5}\right)^{2}=-\frac{274}{25}
Factor v^{2}-\frac{12}{5}v+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{6}{5}\right)^{2}}=\sqrt{-\frac{274}{25}}
Take the square root of both sides of the equation.
v-\frac{6}{5}=\frac{\sqrt{274}i}{5} v-\frac{6}{5}=-\frac{\sqrt{274}i}{5}
Simplify.
v=\frac{6+\sqrt{274}i}{5} v=\frac{-\sqrt{274}i+6}{5}
Add \frac{6}{5} to both sides of the equation.