Solve for v
v=\frac{6+\sqrt{274}i}{5}\approx 1.2+3.310589071i
v=\frac{-\sqrt{274}i+6}{5}\approx 1.2-3.310589071i
Share
Copied to clipboard
12v^{2}-12v-9=7v^{2}-38-33
Use the distributive property to multiply 6v-9 by 2v+1 and combine like terms.
12v^{2}-12v-9=7v^{2}-71
Subtract 33 from -38 to get -71.
12v^{2}-12v-9-7v^{2}=-71
Subtract 7v^{2} from both sides.
5v^{2}-12v-9=-71
Combine 12v^{2} and -7v^{2} to get 5v^{2}.
5v^{2}-12v-9+71=0
Add 71 to both sides.
5v^{2}-12v+62=0
Add -9 and 71 to get 62.
v=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\times 62}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -12 for b, and 62 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-12\right)±\sqrt{144-4\times 5\times 62}}{2\times 5}
Square -12.
v=\frac{-\left(-12\right)±\sqrt{144-20\times 62}}{2\times 5}
Multiply -4 times 5.
v=\frac{-\left(-12\right)±\sqrt{144-1240}}{2\times 5}
Multiply -20 times 62.
v=\frac{-\left(-12\right)±\sqrt{-1096}}{2\times 5}
Add 144 to -1240.
v=\frac{-\left(-12\right)±2\sqrt{274}i}{2\times 5}
Take the square root of -1096.
v=\frac{12±2\sqrt{274}i}{2\times 5}
The opposite of -12 is 12.
v=\frac{12±2\sqrt{274}i}{10}
Multiply 2 times 5.
v=\frac{12+2\sqrt{274}i}{10}
Now solve the equation v=\frac{12±2\sqrt{274}i}{10} when ± is plus. Add 12 to 2i\sqrt{274}.
v=\frac{6+\sqrt{274}i}{5}
Divide 12+2i\sqrt{274} by 10.
v=\frac{-2\sqrt{274}i+12}{10}
Now solve the equation v=\frac{12±2\sqrt{274}i}{10} when ± is minus. Subtract 2i\sqrt{274} from 12.
v=\frac{-\sqrt{274}i+6}{5}
Divide 12-2i\sqrt{274} by 10.
v=\frac{6+\sqrt{274}i}{5} v=\frac{-\sqrt{274}i+6}{5}
The equation is now solved.
12v^{2}-12v-9=7v^{2}-38-33
Use the distributive property to multiply 6v-9 by 2v+1 and combine like terms.
12v^{2}-12v-9=7v^{2}-71
Subtract 33 from -38 to get -71.
12v^{2}-12v-9-7v^{2}=-71
Subtract 7v^{2} from both sides.
5v^{2}-12v-9=-71
Combine 12v^{2} and -7v^{2} to get 5v^{2}.
5v^{2}-12v=-71+9
Add 9 to both sides.
5v^{2}-12v=-62
Add -71 and 9 to get -62.
\frac{5v^{2}-12v}{5}=-\frac{62}{5}
Divide both sides by 5.
v^{2}-\frac{12}{5}v=-\frac{62}{5}
Dividing by 5 undoes the multiplication by 5.
v^{2}-\frac{12}{5}v+\left(-\frac{6}{5}\right)^{2}=-\frac{62}{5}+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-\frac{12}{5}v+\frac{36}{25}=-\frac{62}{5}+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
v^{2}-\frac{12}{5}v+\frac{36}{25}=-\frac{274}{25}
Add -\frac{62}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(v-\frac{6}{5}\right)^{2}=-\frac{274}{25}
Factor v^{2}-\frac{12}{5}v+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{6}{5}\right)^{2}}=\sqrt{-\frac{274}{25}}
Take the square root of both sides of the equation.
v-\frac{6}{5}=\frac{\sqrt{274}i}{5} v-\frac{6}{5}=-\frac{\sqrt{274}i}{5}
Simplify.
v=\frac{6+\sqrt{274}i}{5} v=\frac{-\sqrt{274}i+6}{5}
Add \frac{6}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}