Evaluate
4\left(4p-3q\right)\left(2p+3q\right)
Expand
32p^{2}+24pq-36q^{2}
Share
Copied to clipboard
6^{2}p^{2}-\left(2p-6q\right)^{2}
Expand \left(6p\right)^{2}.
36p^{2}-\left(2p-6q\right)^{2}
Calculate 6 to the power of 2 and get 36.
36p^{2}-\left(4p^{2}-24pq+36q^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2p-6q\right)^{2}.
36p^{2}-4p^{2}+24pq-36q^{2}
To find the opposite of 4p^{2}-24pq+36q^{2}, find the opposite of each term.
32p^{2}+24pq-36q^{2}
Combine 36p^{2} and -4p^{2} to get 32p^{2}.
6^{2}p^{2}-\left(2p-6q\right)^{2}
Expand \left(6p\right)^{2}.
36p^{2}-\left(2p-6q\right)^{2}
Calculate 6 to the power of 2 and get 36.
36p^{2}-\left(4p^{2}-24pq+36q^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2p-6q\right)^{2}.
36p^{2}-4p^{2}+24pq-36q^{2}
To find the opposite of 4p^{2}-24pq+36q^{2}, find the opposite of each term.
32p^{2}+24pq-36q^{2}
Combine 36p^{2} and -4p^{2} to get 32p^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}