Evaluate
g^{2}+10g+10
Factor
\left(g-\left(-\sqrt{15}-5\right)\right)\left(g-\left(\sqrt{15}-5\right)\right)
Share
Copied to clipboard
10g+9+g^{2}+1
Combine 6g and 4g to get 10g.
10g+10+g^{2}
Add 9 and 1 to get 10.
factor(10g+9+g^{2}+1)
Combine 6g and 4g to get 10g.
factor(10g+10+g^{2})
Add 9 and 1 to get 10.
g^{2}+10g+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
g=\frac{-10±\sqrt{10^{2}-4\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-10±\sqrt{100-4\times 10}}{2}
Square 10.
g=\frac{-10±\sqrt{100-40}}{2}
Multiply -4 times 10.
g=\frac{-10±\sqrt{60}}{2}
Add 100 to -40.
g=\frac{-10±2\sqrt{15}}{2}
Take the square root of 60.
g=\frac{2\sqrt{15}-10}{2}
Now solve the equation g=\frac{-10±2\sqrt{15}}{2} when ± is plus. Add -10 to 2\sqrt{15}.
g=\sqrt{15}-5
Divide -10+2\sqrt{15} by 2.
g=\frac{-2\sqrt{15}-10}{2}
Now solve the equation g=\frac{-10±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from -10.
g=-\sqrt{15}-5
Divide -10-2\sqrt{15} by 2.
g^{2}+10g+10=\left(g-\left(\sqrt{15}-5\right)\right)\left(g-\left(-\sqrt{15}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+\sqrt{15} for x_{1} and -5-\sqrt{15} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}