Evaluate
-12ab^{2}
Expand
-12ab^{2}
Share
Copied to clipboard
6^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{2}\right)^{2}\left(-3ab^{2}c^{4}\right)^{-1}
Expand \left(6ab^{2}c^{2}\right)^{2}.
6^{2}a^{2}b^{4}\left(c^{2}\right)^{2}\left(-3ab^{2}c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6^{2}a^{2}b^{4}c^{4}\left(-3ab^{2}c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
36a^{2}b^{4}c^{4}\left(-3ab^{2}c^{4}\right)^{-1}
Calculate 6 to the power of 2 and get 36.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}\left(b^{2}\right)^{-1}\left(c^{4}\right)^{-1}
Expand \left(-3ab^{2}c^{4}\right)^{-1}.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}b^{-2}\left(c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}b^{-2}c^{-4}
To raise a power to another power, multiply the exponents. Multiply 4 and -1 to get -4.
36a^{2}b^{4}c^{4}\left(-\frac{1}{3}\right)a^{-1}b^{-2}c^{-4}
Calculate -3 to the power of -1 and get -\frac{1}{3}.
-12a^{2}b^{4}c^{4}a^{-1}b^{-2}c^{-4}
Multiply 36 and -\frac{1}{3} to get -12.
-12a^{1}b^{4}c^{4}b^{-2}c^{-4}
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
-12a^{1}b^{2}c^{4}c^{-4}
To multiply powers of the same base, add their exponents. Add 4 and -2 to get 2.
-12a^{1}b^{2}
Multiply c^{4} and c^{-4} to get 1.
-12ab^{2}
Calculate a to the power of 1 and get a.
6^{2}a^{2}\left(b^{2}\right)^{2}\left(c^{2}\right)^{2}\left(-3ab^{2}c^{4}\right)^{-1}
Expand \left(6ab^{2}c^{2}\right)^{2}.
6^{2}a^{2}b^{4}\left(c^{2}\right)^{2}\left(-3ab^{2}c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
6^{2}a^{2}b^{4}c^{4}\left(-3ab^{2}c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
36a^{2}b^{4}c^{4}\left(-3ab^{2}c^{4}\right)^{-1}
Calculate 6 to the power of 2 and get 36.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}\left(b^{2}\right)^{-1}\left(c^{4}\right)^{-1}
Expand \left(-3ab^{2}c^{4}\right)^{-1}.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}b^{-2}\left(c^{4}\right)^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
36a^{2}b^{4}c^{4}\left(-3\right)^{-1}a^{-1}b^{-2}c^{-4}
To raise a power to another power, multiply the exponents. Multiply 4 and -1 to get -4.
36a^{2}b^{4}c^{4}\left(-\frac{1}{3}\right)a^{-1}b^{-2}c^{-4}
Calculate -3 to the power of -1 and get -\frac{1}{3}.
-12a^{2}b^{4}c^{4}a^{-1}b^{-2}c^{-4}
Multiply 36 and -\frac{1}{3} to get -12.
-12a^{1}b^{4}c^{4}b^{-2}c^{-4}
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
-12a^{1}b^{2}c^{4}c^{-4}
To multiply powers of the same base, add their exponents. Add 4 and -2 to get 2.
-12a^{1}b^{2}
Multiply c^{4} and c^{-4} to get 1.
-12ab^{2}
Calculate a to the power of 1 and get a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}