Evaluate
4ab+\frac{8b^{2}}{9}-\frac{b}{3}+6a
Expand
4ab+\frac{8b^{2}}{9}-\frac{b}{3}+6a
Share
Copied to clipboard
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right)+\frac{4}{3}ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b\right)^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Consider \left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}\right)^{2}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Expand \left(\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-2^{2}a^{2}+\frac{4}{3}ab
Expand \left(2a\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Calculate 2 to the power of 2 and get 4.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{8}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Combine \frac{4}{9}b^{2} and \frac{4}{9}b^{2} to get \frac{8}{9}b^{2}.
6a-\frac{1}{3}b+\frac{8}{3}ab+\frac{8}{9}b^{2}+\frac{4}{3}ab
Combine 4a^{2} and -4a^{2} to get 0.
6a-\frac{1}{3}b+4ab+\frac{8}{9}b^{2}
Combine \frac{8}{3}ab and \frac{4}{3}ab to get 4ab.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right)+\frac{4}{3}ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b\right)^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Consider \left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}\right)^{2}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Expand \left(\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-2^{2}a^{2}+\frac{4}{3}ab
Expand \left(2a\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Calculate 2 to the power of 2 and get 4.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{8}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Combine \frac{4}{9}b^{2} and \frac{4}{9}b^{2} to get \frac{8}{9}b^{2}.
6a-\frac{1}{3}b+\frac{8}{3}ab+\frac{8}{9}b^{2}+\frac{4}{3}ab
Combine 4a^{2} and -4a^{2} to get 0.
6a-\frac{1}{3}b+4ab+\frac{8}{9}b^{2}
Combine \frac{8}{3}ab and \frac{4}{3}ab to get 4ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}