Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right)+\frac{4}{3}ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b\right)^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Consider \left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}\right)^{2}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Expand \left(\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-2^{2}a^{2}+\frac{4}{3}ab
Expand \left(2a\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Calculate 2 to the power of 2 and get 4.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{8}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Combine \frac{4}{9}b^{2} and \frac{4}{9}b^{2} to get \frac{8}{9}b^{2}.
6a-\frac{1}{3}b+\frac{8}{3}ab+\frac{8}{9}b^{2}+\frac{4}{3}ab
Combine 4a^{2} and -4a^{2} to get 0.
6a-\frac{1}{3}b+4ab+\frac{8}{9}b^{2}
Combine \frac{8}{3}ab and \frac{4}{3}ab to get 4ab.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right)+\frac{4}{3}ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2a+\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}b\right)^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Consider \left(\frac{2}{3}b-2a\right)\left(2a+\frac{2}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\left(\frac{2}{3}\right)^{2}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Expand \left(\frac{2}{3}b\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-\left(2a\right)^{2}+\frac{4}{3}ab
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-2^{2}a^{2}+\frac{4}{3}ab
Expand \left(2a\right)^{2}.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{4}{9}b^{2}+\frac{4}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Calculate 2 to the power of 2 and get 4.
6a-\frac{1}{3}b+4a^{2}+\frac{8}{3}ab+\frac{8}{9}b^{2}-4a^{2}+\frac{4}{3}ab
Combine \frac{4}{9}b^{2} and \frac{4}{9}b^{2} to get \frac{8}{9}b^{2}.
6a-\frac{1}{3}b+\frac{8}{3}ab+\frac{8}{9}b^{2}+\frac{4}{3}ab
Combine 4a^{2} and -4a^{2} to get 0.
6a-\frac{1}{3}b+4ab+\frac{8}{9}b^{2}
Combine \frac{8}{3}ab and \frac{4}{3}ab to get 4ab.