Evaluate
b\left(5b-19a\right)
Expand
5b^{2}-19ab
Quiz
Algebra
5 problems similar to:
( 6 a + b ) ( 6 a - b ) - ( 9 a - 2 b ) ( 4 a + 3 b ) ] : ( - 3 b )
Share
Copied to clipboard
\left(6a\right)^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Consider \left(6a+b\right)\left(6a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Expand \left(6a\right)^{2}.
36a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Calculate 6 to the power of 2 and get 36.
36a^{2}-b^{2}-\left(36a^{2}+27ab-8ba-6b^{2}\right)
Apply the distributive property by multiplying each term of 9a-2b by each term of 4a+3b.
36a^{2}-b^{2}-\left(36a^{2}+19ab-6b^{2}\right)
Combine 27ab and -8ba to get 19ab.
36a^{2}-b^{2}-36a^{2}-19ab-\left(-6b^{2}\right)
To find the opposite of 36a^{2}+19ab-6b^{2}, find the opposite of each term.
36a^{2}-b^{2}-36a^{2}-19ab+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
-b^{2}-19ab+6b^{2}
Combine 36a^{2} and -36a^{2} to get 0.
5b^{2}-19ab
Combine -b^{2} and 6b^{2} to get 5b^{2}.
\left(6a\right)^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Consider \left(6a+b\right)\left(6a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Expand \left(6a\right)^{2}.
36a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Calculate 6 to the power of 2 and get 36.
36a^{2}-b^{2}-\left(36a^{2}+27ab-8ba-6b^{2}\right)
Apply the distributive property by multiplying each term of 9a-2b by each term of 4a+3b.
36a^{2}-b^{2}-\left(36a^{2}+19ab-6b^{2}\right)
Combine 27ab and -8ba to get 19ab.
36a^{2}-b^{2}-36a^{2}-19ab-\left(-6b^{2}\right)
To find the opposite of 36a^{2}+19ab-6b^{2}, find the opposite of each term.
36a^{2}-b^{2}-36a^{2}-19ab+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
-b^{2}-19ab+6b^{2}
Combine 36a^{2} and -36a^{2} to get 0.
5b^{2}-19ab
Combine -b^{2} and 6b^{2} to get 5b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}