Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(6a\right)^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Consider \left(6a+b\right)\left(6a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Expand \left(6a\right)^{2}.
36a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Calculate 6 to the power of 2 and get 36.
36a^{2}-b^{2}-\left(36a^{2}+27ab-8ba-6b^{2}\right)
Apply the distributive property by multiplying each term of 9a-2b by each term of 4a+3b.
36a^{2}-b^{2}-\left(36a^{2}+19ab-6b^{2}\right)
Combine 27ab and -8ba to get 19ab.
36a^{2}-b^{2}-36a^{2}-19ab-\left(-6b^{2}\right)
To find the opposite of 36a^{2}+19ab-6b^{2}, find the opposite of each term.
36a^{2}-b^{2}-36a^{2}-19ab+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
-b^{2}-19ab+6b^{2}
Combine 36a^{2} and -36a^{2} to get 0.
5b^{2}-19ab
Combine -b^{2} and 6b^{2} to get 5b^{2}.
\left(6a\right)^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Consider \left(6a+b\right)\left(6a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6^{2}a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Expand \left(6a\right)^{2}.
36a^{2}-b^{2}-\left(9a-2b\right)\left(4a+3b\right)
Calculate 6 to the power of 2 and get 36.
36a^{2}-b^{2}-\left(36a^{2}+27ab-8ba-6b^{2}\right)
Apply the distributive property by multiplying each term of 9a-2b by each term of 4a+3b.
36a^{2}-b^{2}-\left(36a^{2}+19ab-6b^{2}\right)
Combine 27ab and -8ba to get 19ab.
36a^{2}-b^{2}-36a^{2}-19ab-\left(-6b^{2}\right)
To find the opposite of 36a^{2}+19ab-6b^{2}, find the opposite of each term.
36a^{2}-b^{2}-36a^{2}-19ab+6b^{2}
The opposite of -6b^{2} is 6b^{2}.
-b^{2}-19ab+6b^{2}
Combine 36a^{2} and -36a^{2} to get 0.
5b^{2}-19ab
Combine -b^{2} and 6b^{2} to get 5b^{2}.