Evaluate
8a^{4}+10a^{2}-a+7
Differentiate w.r.t. a
32a^{3}+20a-1
Share
Copied to clipboard
6a+3a^{2}+7+3a^{4}+7a^{2}+5a^{4}-7a
Add 3 and 4 to get 7.
6a+10a^{2}+7+3a^{4}+5a^{4}-7a
Combine 3a^{2} and 7a^{2} to get 10a^{2}.
6a+10a^{2}+7+8a^{4}-7a
Combine 3a^{4} and 5a^{4} to get 8a^{4}.
-a+10a^{2}+7+8a^{4}
Combine 6a and -7a to get -a.
\frac{\mathrm{d}}{\mathrm{d}a}(6a+3a^{2}+7+3a^{4}+7a^{2}+5a^{4}-7a)
Add 3 and 4 to get 7.
\frac{\mathrm{d}}{\mathrm{d}a}(6a+10a^{2}+7+3a^{4}+5a^{4}-7a)
Combine 3a^{2} and 7a^{2} to get 10a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(6a+10a^{2}+7+8a^{4}-7a)
Combine 3a^{4} and 5a^{4} to get 8a^{4}.
\frac{\mathrm{d}}{\mathrm{d}a}(-a+10a^{2}+7+8a^{4})
Combine 6a and -7a to get -a.
-a^{1-1}+2\times 10a^{2-1}+4\times 8a^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-a^{0}+2\times 10a^{2-1}+4\times 8a^{4-1}
Subtract 1 from 1.
-a^{0}+20a^{2-1}+4\times 8a^{4-1}
Multiply 2 times 10.
-a^{0}+20a^{1}+4\times 8a^{4-1}
Subtract 1 from 2.
-a^{0}+20a^{1}+32a^{4-1}
Multiply 2 times 10.
-a^{0}+20a^{1}+32a^{3}
Subtract 1 from 4.
-a^{0}+20a+32a^{3}
For any term t, t^{1}=t.
-1+20a+32a^{3}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}