Evaluate
280+24x-4x^{2}
Expand
280+24x-4x^{2}
Graph
Share
Copied to clipboard
120+12x-20x-2x^{2}+\left(40-2x\right)\left(4+x\right)
Apply the distributive property by multiplying each term of 6-x by each term of 20+2x.
120-8x-2x^{2}+\left(40-2x\right)\left(4+x\right)
Combine 12x and -20x to get -8x.
120-8x-2x^{2}+160+40x-8x-2x^{2}
Apply the distributive property by multiplying each term of 40-2x by each term of 4+x.
120-8x-2x^{2}+160+32x-2x^{2}
Combine 40x and -8x to get 32x.
280-8x-2x^{2}+32x-2x^{2}
Add 120 and 160 to get 280.
280+24x-2x^{2}-2x^{2}
Combine -8x and 32x to get 24x.
280+24x-4x^{2}
Combine -2x^{2} and -2x^{2} to get -4x^{2}.
120+12x-20x-2x^{2}+\left(40-2x\right)\left(4+x\right)
Apply the distributive property by multiplying each term of 6-x by each term of 20+2x.
120-8x-2x^{2}+\left(40-2x\right)\left(4+x\right)
Combine 12x and -20x to get -8x.
120-8x-2x^{2}+160+40x-8x-2x^{2}
Apply the distributive property by multiplying each term of 40-2x by each term of 4+x.
120-8x-2x^{2}+160+32x-2x^{2}
Combine 40x and -8x to get 32x.
280-8x-2x^{2}+32x-2x^{2}
Add 120 and 160 to get 280.
280+24x-2x^{2}-2x^{2}
Combine -8x and 32x to get 24x.
280+24x-4x^{2}
Combine -2x^{2} and -2x^{2} to get -4x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}