Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt[4]{3}\left(\sqrt{208\cos(\theta )+\sqrt{3}}+\sqrt[4]{3}\right)}{8\cos(\theta )}\text{; }x=\frac{\sqrt[4]{3}\left(-\sqrt{208\cos(\theta )+\sqrt{3}}+\sqrt[4]{3}\right)}{8\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\x=-13\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt[4]{3}\left(\sqrt{208\cos(\theta )+\sqrt{3}}+\sqrt[4]{3}\right)}{8\cos(\theta )}\text{; }x=\frac{\sqrt[4]{3}\left(-\sqrt{208\cos(\theta )+\sqrt{3}}+\sqrt[4]{3}\right)}{8\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi \left(2n_{1}+1\right)}{2}\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{4\pi n_{2}-\left(2\arcsin(\frac{\sqrt{3}}{208})+\pi \right)}{2}\text{ and }\theta \leq \frac{4\pi n_{2}+2\arcsin(\frac{\sqrt{3}}{208})+\pi }{2}\right)\\x=-13\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}