Evaluate
\frac{59}{41}+\frac{2}{41}i\approx 1.43902439+0.048780488i
Real Part
\frac{59}{41} = 1\frac{18}{41} = 1.4390243902439024
Share
Copied to clipboard
\frac{\left(6-7i\right)\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+5i.
\frac{\left(6-7i\right)\left(4+5i\right)}{4^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-7i\right)\left(4+5i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5i^{2}}{41}
Multiply complex numbers 6-7i and 4+5i like you multiply binomials.
\frac{6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{24+30i-28i+35}{41}
Do the multiplications in 6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5\left(-1\right).
\frac{24+35+\left(30-28\right)i}{41}
Combine the real and imaginary parts in 24+30i-28i+35.
\frac{59+2i}{41}
Do the additions in 24+35+\left(30-28\right)i.
\frac{59}{41}+\frac{2}{41}i
Divide 59+2i by 41 to get \frac{59}{41}+\frac{2}{41}i.
Re(\frac{\left(6-7i\right)\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)})
Multiply both numerator and denominator of \frac{6-7i}{4-5i} by the complex conjugate of the denominator, 4+5i.
Re(\frac{\left(6-7i\right)\left(4+5i\right)}{4^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(6-7i\right)\left(4+5i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5i^{2}}{41})
Multiply complex numbers 6-7i and 4+5i like you multiply binomials.
Re(\frac{6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{24+30i-28i+35}{41})
Do the multiplications in 6\times 4+6\times \left(5i\right)-7i\times 4-7\times 5\left(-1\right).
Re(\frac{24+35+\left(30-28\right)i}{41})
Combine the real and imaginary parts in 24+30i-28i+35.
Re(\frac{59+2i}{41})
Do the additions in 24+35+\left(30-28\right)i.
Re(\frac{59}{41}+\frac{2}{41}i)
Divide 59+2i by 41 to get \frac{59}{41}+\frac{2}{41}i.
\frac{59}{41}
The real part of \frac{59}{41}+\frac{2}{41}i is \frac{59}{41}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}