Evaluate
\frac{133}{15}\approx 8.866666667
Factor
\frac{7 \cdot 19}{3 \cdot 5} = 8\frac{13}{15} = 8.866666666666667
Share
Copied to clipboard
\frac{2.6}{3}+8
Subtract 3.4 from 6 to get 2.6.
\frac{26}{30}+8
Expand \frac{2.6}{3} by multiplying both numerator and the denominator by 10.
\frac{13}{15}+8
Reduce the fraction \frac{26}{30} to lowest terms by extracting and canceling out 2.
\frac{13}{15}+\frac{120}{15}
Convert 8 to fraction \frac{120}{15}.
\frac{13+120}{15}
Since \frac{13}{15} and \frac{120}{15} have the same denominator, add them by adding their numerators.
\frac{133}{15}
Add 13 and 120 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}