Solve for x
x=36-18\sqrt{3}\approx 4.823085464
Graph
Share
Copied to clipboard
\left(6-2\sqrt{x}\right)^{2}+36=8x
Calculate 6 to the power of 2 and get 36.
\left(6-2\sqrt{x}\right)^{2}+36-8x=0
Subtract 8x from both sides.
36-24\sqrt{x}+4\left(\sqrt{x}\right)^{2}+36-8x=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2\sqrt{x}\right)^{2}.
36-24\sqrt{x}+4x+36-8x=0
Calculate \sqrt{x} to the power of 2 and get x.
72-24\sqrt{x}+4x-8x=0
Add 36 and 36 to get 72.
72-24\sqrt{x}-4x=0
Combine 4x and -8x to get -4x.
-24\sqrt{x}-4x=-72
Subtract 72 from both sides. Anything subtracted from zero gives its negation.
-24\sqrt{x}=-72+4x
Subtract -4x from both sides of the equation.
\left(-24\sqrt{x}\right)^{2}=\left(4x-72\right)^{2}
Square both sides of the equation.
\left(-24\right)^{2}\left(\sqrt{x}\right)^{2}=\left(4x-72\right)^{2}
Expand \left(-24\sqrt{x}\right)^{2}.
576\left(\sqrt{x}\right)^{2}=\left(4x-72\right)^{2}
Calculate -24 to the power of 2 and get 576.
576x=\left(4x-72\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
576x=16x^{2}-576x+5184
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-72\right)^{2}.
576x-16x^{2}=-576x+5184
Subtract 16x^{2} from both sides.
576x-16x^{2}+576x=5184
Add 576x to both sides.
1152x-16x^{2}=5184
Combine 576x and 576x to get 1152x.
1152x-16x^{2}-5184=0
Subtract 5184 from both sides.
-16x^{2}+1152x-5184=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1152±\sqrt{1152^{2}-4\left(-16\right)\left(-5184\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 1152 for b, and -5184 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1152±\sqrt{1327104-4\left(-16\right)\left(-5184\right)}}{2\left(-16\right)}
Square 1152.
x=\frac{-1152±\sqrt{1327104+64\left(-5184\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-1152±\sqrt{1327104-331776}}{2\left(-16\right)}
Multiply 64 times -5184.
x=\frac{-1152±\sqrt{995328}}{2\left(-16\right)}
Add 1327104 to -331776.
x=\frac{-1152±576\sqrt{3}}{2\left(-16\right)}
Take the square root of 995328.
x=\frac{-1152±576\sqrt{3}}{-32}
Multiply 2 times -16.
x=\frac{576\sqrt{3}-1152}{-32}
Now solve the equation x=\frac{-1152±576\sqrt{3}}{-32} when ± is plus. Add -1152 to 576\sqrt{3}.
x=36-18\sqrt{3}
Divide -1152+576\sqrt{3} by -32.
x=\frac{-576\sqrt{3}-1152}{-32}
Now solve the equation x=\frac{-1152±576\sqrt{3}}{-32} when ± is minus. Subtract 576\sqrt{3} from -1152.
x=18\sqrt{3}+36
Divide -1152-576\sqrt{3} by -32.
x=36-18\sqrt{3} x=18\sqrt{3}+36
The equation is now solved.
\left(6-2\sqrt{36-18\sqrt{3}}\right)^{2}+6^{2}=8\left(36-18\sqrt{3}\right)
Substitute 36-18\sqrt{3} for x in the equation \left(6-2\sqrt{x}\right)^{2}+6^{2}=8x.
288-144\times 3^{\frac{1}{2}}=288-144\times 3^{\frac{1}{2}}
Simplify. The value x=36-18\sqrt{3} satisfies the equation.
\left(6-2\sqrt{18\sqrt{3}+36}\right)^{2}+6^{2}=8\left(18\sqrt{3}+36\right)
Substitute 18\sqrt{3}+36 for x in the equation \left(6-2\sqrt{x}\right)^{2}+6^{2}=8x.
144=144\times 3^{\frac{1}{2}}+288
Simplify. The value x=18\sqrt{3}+36 does not satisfy the equation.
x=36-18\sqrt{3}
Equation -24\sqrt{x}=4x-72 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}