Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\left(6-\sqrt{3}y\right)^{2}+y^{2}-4=0
Subtract 4 from both sides.
36-12\sqrt{3}y+\left(\sqrt{3}\right)^{2}y^{2}+y^{2}-4=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{3}y\right)^{2}.
36-12\sqrt{3}y+3y^{2}+y^{2}-4=0
The square of \sqrt{3} is 3.
36-12\sqrt{3}y+4y^{2}-4=0
Combine 3y^{2} and y^{2} to get 4y^{2}.
32-12\sqrt{3}y+4y^{2}=0
Subtract 4 from 36 to get 32.
4y^{2}+\left(-12\sqrt{3}\right)y+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-12\sqrt{3}\right)±\sqrt{\left(-12\sqrt{3}\right)^{2}-4\times 4\times 32}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12\sqrt{3} for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\sqrt{3}\right)±\sqrt{432-4\times 4\times 32}}{2\times 4}
Square -12\sqrt{3}.
y=\frac{-\left(-12\sqrt{3}\right)±\sqrt{432-16\times 32}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-12\sqrt{3}\right)±\sqrt{432-512}}{2\times 4}
Multiply -16 times 32.
y=\frac{-\left(-12\sqrt{3}\right)±\sqrt{-80}}{2\times 4}
Add 432 to -512.
y=\frac{-\left(-12\sqrt{3}\right)±4\sqrt{5}i}{2\times 4}
Take the square root of -80.
y=\frac{12\sqrt{3}±4\sqrt{5}i}{2\times 4}
The opposite of -12\sqrt{3} is 12\sqrt{3}.
y=\frac{12\sqrt{3}±4\sqrt{5}i}{8}
Multiply 2 times 4.
y=\frac{12\sqrt{3}+4\sqrt{5}i}{8}
Now solve the equation y=\frac{12\sqrt{3}±4\sqrt{5}i}{8} when ± is plus. Add 12\sqrt{3} to 4i\sqrt{5}.
y=\frac{3\sqrt{3}+\sqrt{5}i}{2}
Divide 12\sqrt{3}+4i\sqrt{5} by 8.
y=\frac{-4\sqrt{5}i+12\sqrt{3}}{8}
Now solve the equation y=\frac{12\sqrt{3}±4\sqrt{5}i}{8} when ± is minus. Subtract 4i\sqrt{5} from 12\sqrt{3}.
y=\frac{-\sqrt{5}i+3\sqrt{3}}{2}
Divide 12\sqrt{3}-4i\sqrt{5} by 8.
y=\frac{3\sqrt{3}+\sqrt{5}i}{2} y=\frac{-\sqrt{5}i+3\sqrt{3}}{2}
The equation is now solved.
36-12\sqrt{3}y+\left(\sqrt{3}\right)^{2}y^{2}+y^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{3}y\right)^{2}.
36-12\sqrt{3}y+3y^{2}+y^{2}=4
The square of \sqrt{3} is 3.
36-12\sqrt{3}y+4y^{2}=4
Combine 3y^{2} and y^{2} to get 4y^{2}.
-12\sqrt{3}y+4y^{2}=4-36
Subtract 36 from both sides.
-12\sqrt{3}y+4y^{2}=-32
Subtract 36 from 4 to get -32.
4y^{2}+\left(-12\sqrt{3}\right)y=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4y^{2}+\left(-12\sqrt{3}\right)y}{4}=-\frac{32}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{12\sqrt{3}}{4}\right)y=-\frac{32}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}+\left(-3\sqrt{3}\right)y=-\frac{32}{4}
Divide -12\sqrt{3} by 4.
y^{2}+\left(-3\sqrt{3}\right)y=-8
Divide -32 by 4.
y^{2}+\left(-3\sqrt{3}\right)y+\left(-\frac{3\sqrt{3}}{2}\right)^{2}=-8+\left(-\frac{3\sqrt{3}}{2}\right)^{2}
Divide -3\sqrt{3}, the coefficient of the x term, by 2 to get -\frac{3\sqrt{3}}{2}. Then add the square of -\frac{3\sqrt{3}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\left(-3\sqrt{3}\right)y+\frac{27}{4}=-8+\frac{27}{4}
Square -\frac{3\sqrt{3}}{2}.
y^{2}+\left(-3\sqrt{3}\right)y+\frac{27}{4}=-\frac{5}{4}
Add -8 to \frac{27}{4}.
\left(y-\frac{3\sqrt{3}}{2}\right)^{2}=-\frac{5}{4}
Factor y^{2}+\left(-3\sqrt{3}\right)y+\frac{27}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3\sqrt{3}}{2}\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
y-\frac{3\sqrt{3}}{2}=\frac{\sqrt{5}i}{2} y-\frac{3\sqrt{3}}{2}=-\frac{\sqrt{5}i}{2}
Simplify.
y=\frac{3\sqrt{3}+\sqrt{5}i}{2} y=\frac{-\sqrt{5}i+3\sqrt{3}}{2}
Add \frac{3\sqrt{3}}{2} to both sides of the equation.