Evaluate
-48
Factor
-48
Share
Copied to clipboard
6\sqrt{12}\sqrt{\frac{1\times 3+1}{3}}\left(-2\right)
To multiply \sqrt{\frac{24}{5}} and \sqrt{\frac{5}{2}}, multiply the numbers under the square root.
6\times 2\sqrt{3}\sqrt{\frac{1\times 3+1}{3}}\left(-2\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
12\sqrt{3}\sqrt{\frac{1\times 3+1}{3}}\left(-2\right)
Multiply 6 and 2 to get 12.
12\sqrt{3}\sqrt{\frac{3+1}{3}}\left(-2\right)
Multiply 1 and 3 to get 3.
12\sqrt{3}\sqrt{\frac{4}{3}}\left(-2\right)
Add 3 and 1 to get 4.
12\sqrt{3}\times \frac{\sqrt{4}}{\sqrt{3}}\left(-2\right)
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
12\sqrt{3}\times \frac{2}{\sqrt{3}}\left(-2\right)
Calculate the square root of 4 and get 2.
12\sqrt{3}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(-2\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
12\sqrt{3}\times \frac{2\sqrt{3}}{3}\left(-2\right)
The square of \sqrt{3} is 3.
-24\sqrt{3}\times \frac{2\sqrt{3}}{3}
Multiply 12 and -2 to get -24.
-8\times 2\sqrt{3}\sqrt{3}
Cancel out 3, the greatest common factor in 24 and 3.
-16\sqrt{3}\sqrt{3}
Multiply -8 and 2 to get -16.
-16\times 3
Multiply \sqrt{3} and \sqrt{3} to get 3.
-48
Multiply -16 and 3 to get -48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}