Evaluate
-6\sqrt{30}-558\approx -590.86335345
Factor
6 {(-\sqrt{30} - 93)} = -590.86335345
Share
Copied to clipboard
24\left(\sqrt{3}\right)^{2}-42\sqrt{3}\sqrt{10}+36\sqrt{3}\sqrt{10}-63\left(\sqrt{10}\right)^{2}
Apply the distributive property by multiplying each term of 6\sqrt{3}+9\sqrt{10} by each term of 4\sqrt{3}-7\sqrt{10}.
24\times 3-42\sqrt{3}\sqrt{10}+36\sqrt{3}\sqrt{10}-63\left(\sqrt{10}\right)^{2}
The square of \sqrt{3} is 3.
72-42\sqrt{3}\sqrt{10}+36\sqrt{3}\sqrt{10}-63\left(\sqrt{10}\right)^{2}
Multiply 24 and 3 to get 72.
72-42\sqrt{30}+36\sqrt{3}\sqrt{10}-63\left(\sqrt{10}\right)^{2}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
72-42\sqrt{30}+36\sqrt{30}-63\left(\sqrt{10}\right)^{2}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
72-6\sqrt{30}-63\left(\sqrt{10}\right)^{2}
Combine -42\sqrt{30} and 36\sqrt{30} to get -6\sqrt{30}.
72-6\sqrt{30}-63\times 10
The square of \sqrt{10} is 10.
72-6\sqrt{30}-630
Multiply -63 and 10 to get -630.
-558-6\sqrt{30}
Subtract 630 from 72 to get -558.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}