Evaluate
\frac{31}{9}\approx 3.444444444
Factor
\frac{31}{3 ^ {2}} = 3\frac{4}{9} = 3.4444444444444446
Share
Copied to clipboard
\left(\frac{72+7}{12}-\frac{3\times 36+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Multiply 6 and 12 to get 72.
\left(\frac{79}{12}-\frac{3\times 36+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Add 72 and 7 to get 79.
\left(\frac{79}{12}-\frac{108+17}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Multiply 3 and 36 to get 108.
\left(\frac{79}{12}-\frac{125}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Add 108 and 17 to get 125.
\left(\frac{237}{36}-\frac{125}{36}\right)\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Least common multiple of 12 and 36 is 36. Convert \frac{79}{12} and \frac{125}{36} to fractions with denominator 36.
\frac{237-125}{36}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Since \frac{237}{36} and \frac{125}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{112}{36}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Subtract 125 from 237 to get 112.
\frac{28}{9}\times \frac{2\times 2+1}{2}-\frac{4\times 3+1}{3}
Reduce the fraction \frac{112}{36} to lowest terms by extracting and canceling out 4.
\frac{28}{9}\times \frac{4+1}{2}-\frac{4\times 3+1}{3}
Multiply 2 and 2 to get 4.
\frac{28}{9}\times \frac{5}{2}-\frac{4\times 3+1}{3}
Add 4 and 1 to get 5.
\frac{28\times 5}{9\times 2}-\frac{4\times 3+1}{3}
Multiply \frac{28}{9} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{140}{18}-\frac{4\times 3+1}{3}
Do the multiplications in the fraction \frac{28\times 5}{9\times 2}.
\frac{70}{9}-\frac{4\times 3+1}{3}
Reduce the fraction \frac{140}{18} to lowest terms by extracting and canceling out 2.
\frac{70}{9}-\frac{12+1}{3}
Multiply 4 and 3 to get 12.
\frac{70}{9}-\frac{13}{3}
Add 12 and 1 to get 13.
\frac{70}{9}-\frac{39}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{70}{9} and \frac{13}{3} to fractions with denominator 9.
\frac{70-39}{9}
Since \frac{70}{9} and \frac{39}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{31}{9}
Subtract 39 from 70 to get 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}