Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{108+5}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Multiply 6 and 18 to get 108.
\frac{\frac{113}{18}-\frac{5\times 15+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Add 108 and 5 to get 113.
\frac{\frac{113}{18}-\frac{75+11}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Multiply 5 and 15 to get 75.
\frac{\frac{113}{18}-\frac{86}{15}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Add 75 and 11 to get 86.
\frac{\frac{565}{90}-\frac{516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Least common multiple of 18 and 15 is 90. Convert \frac{113}{18} and \frac{86}{15} to fractions with denominator 90.
\frac{\frac{565-516}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Since \frac{565}{90} and \frac{516}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{49}{90}}{\frac{2\times 7+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Subtract 516 from 565 to get 49.
\frac{\frac{49}{90}}{\frac{14+2}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Multiply 2 and 7 to get 14.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{8\times 3+2}{3}}{1.4}}
Add 14 and 2 to get 16.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{24+2}{3}}{1.4}}
Multiply 8 and 3 to get 24.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{12-\frac{26}{3}}{1.4}}
Add 24 and 2 to get 26.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36}{3}-\frac{26}{3}}{1.4}}
Convert 12 to fraction \frac{36}{3}.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{36-26}{3}}{1.4}}
Since \frac{36}{3} and \frac{26}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{\frac{10}{3}}{1.4}}
Subtract 26 from 36 to get 10.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{3\times 1.4}}
Express \frac{\frac{10}{3}}{1.4} as a single fraction.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{10}{4.2}}
Multiply 3 and 1.4 to get 4.2.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{100}{42}}
Expand \frac{10}{4.2} by multiplying both numerator and the denominator by 10.
\frac{\frac{49}{90}}{\frac{16}{7}+\frac{50}{21}}
Reduce the fraction \frac{100}{42} to lowest terms by extracting and canceling out 2.
\frac{\frac{49}{90}}{\frac{48}{21}+\frac{50}{21}}
Least common multiple of 7 and 21 is 21. Convert \frac{16}{7} and \frac{50}{21} to fractions with denominator 21.
\frac{\frac{49}{90}}{\frac{48+50}{21}}
Since \frac{48}{21} and \frac{50}{21} have the same denominator, add them by adding their numerators.
\frac{\frac{49}{90}}{\frac{98}{21}}
Add 48 and 50 to get 98.
\frac{\frac{49}{90}}{\frac{14}{3}}
Reduce the fraction \frac{98}{21} to lowest terms by extracting and canceling out 7.
\frac{49}{90}\times \frac{3}{14}
Divide \frac{49}{90} by \frac{14}{3} by multiplying \frac{49}{90} by the reciprocal of \frac{14}{3}.
\frac{49\times 3}{90\times 14}
Multiply \frac{49}{90} times \frac{3}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{147}{1260}
Do the multiplications in the fraction \frac{49\times 3}{90\times 14}.
\frac{7}{60}
Reduce the fraction \frac{147}{1260} to lowest terms by extracting and canceling out 21.