Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{12+1}{2}-7\right)\left(\frac{6\times 3+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply 6 and 2 to get 12.
\left(\frac{13}{2}-7\right)\left(\frac{6\times 3+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Add 12 and 1 to get 13.
\left(\frac{13}{2}-\frac{14}{2}\right)\left(\frac{6\times 3+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Convert 7 to fraction \frac{14}{2}.
\frac{13-14}{2}\left(\frac{6\times 3+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Since \frac{13}{2} and \frac{14}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}\left(\frac{6\times 3+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Subtract 14 from 13 to get -1.
-\frac{1}{2}\left(\frac{18+1}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply 6 and 3 to get 18.
-\frac{1}{2}\left(\frac{19}{3}-7\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Add 18 and 1 to get 19.
-\frac{1}{2}\left(\frac{19}{3}-\frac{21}{3}\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Convert 7 to fraction \frac{21}{3}.
-\frac{1}{2}\times \frac{19-21}{3}\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Since \frac{19}{3} and \frac{21}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}\left(-\frac{2}{3}\right)\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Subtract 21 from 19 to get -2.
\frac{-\left(-2\right)}{2\times 3}\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply -\frac{1}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{6}\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Do the multiplications in the fraction \frac{-\left(-2\right)}{2\times 3}.
\frac{1}{3}\left(\frac{6\times 4+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{3}\left(\frac{24+7}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply 6 and 4 to get 24.
\frac{1}{3}\left(\frac{31}{4}-7\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Add 24 and 7 to get 31.
\frac{1}{3}\left(\frac{31}{4}-\frac{28}{4}\right)\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Convert 7 to fraction \frac{28}{4}.
\frac{1}{3}\times \frac{31-28}{4}\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Since \frac{31}{4} and \frac{28}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{3}{4}\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Subtract 28 from 31 to get 3.
\frac{1\times 3}{3\times 4}\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply \frac{1}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}\left(\frac{6\times 5+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Cancel out 3 in both numerator and denominator.
\frac{1}{4}\left(\frac{30+4}{5}-7\right)+\frac{6\times 6+7}{6}-7
Multiply 6 and 5 to get 30.
\frac{1}{4}\left(\frac{34}{5}-7\right)+\frac{6\times 6+7}{6}-7
Add 30 and 4 to get 34.
\frac{1}{4}\left(\frac{34}{5}-\frac{35}{5}\right)+\frac{6\times 6+7}{6}-7
Convert 7 to fraction \frac{35}{5}.
\frac{1}{4}\times \frac{34-35}{5}+\frac{6\times 6+7}{6}-7
Since \frac{34}{5} and \frac{35}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}\left(-\frac{1}{5}\right)+\frac{6\times 6+7}{6}-7
Subtract 35 from 34 to get -1.
\frac{1\left(-1\right)}{4\times 5}+\frac{6\times 6+7}{6}-7
Multiply \frac{1}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{20}+\frac{6\times 6+7}{6}-7
Do the multiplications in the fraction \frac{1\left(-1\right)}{4\times 5}.
-\frac{1}{20}+\frac{6\times 6+7}{6}-7
Fraction \frac{-1}{20} can be rewritten as -\frac{1}{20} by extracting the negative sign.
-\frac{1}{20}+\frac{36+7}{6}-7
Multiply 6 and 6 to get 36.
-\frac{1}{20}+\frac{43}{6}-7
Add 36 and 7 to get 43.
-\frac{3}{60}+\frac{430}{60}-7
Least common multiple of 20 and 6 is 60. Convert -\frac{1}{20} and \frac{43}{6} to fractions with denominator 60.
\frac{-3+430}{60}-7
Since -\frac{3}{60} and \frac{430}{60} have the same denominator, add them by adding their numerators.
\frac{427}{60}-7
Add -3 and 430 to get 427.
\frac{427}{60}-\frac{420}{60}
Convert 7 to fraction \frac{420}{60}.
\frac{427-420}{60}
Since \frac{427}{60} and \frac{420}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{60}
Subtract 420 from 427 to get 7.