( 6 \frac { 1 } { 12 } - 3 \frac { 17 } { 36 } ) \cdot 2,5 - 4 \frac { 1 } { 3 } : 0,65
Evaluate
-\frac{5}{36}\approx -0,138888889
Factor
-\frac{5}{36} = -0.1388888888888889
Share
Copied to clipboard
\left(\frac{72+1}{12}-\frac{3\times 36+17}{36}\right)\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Multiply 6 and 12 to get 72.
\left(\frac{73}{12}-\frac{3\times 36+17}{36}\right)\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Add 72 and 1 to get 73.
\left(\frac{73}{12}-\frac{108+17}{36}\right)\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Multiply 3 and 36 to get 108.
\left(\frac{73}{12}-\frac{125}{36}\right)\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Add 108 and 17 to get 125.
\left(\frac{219}{36}-\frac{125}{36}\right)\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Least common multiple of 12 and 36 is 36. Convert \frac{73}{12} and \frac{125}{36} to fractions with denominator 36.
\frac{219-125}{36}\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Since \frac{219}{36} and \frac{125}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{94}{36}\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Subtract 125 from 219 to get 94.
\frac{47}{18}\times 2,5-\frac{\frac{4\times 3+1}{3}}{0,65}
Reduce the fraction \frac{94}{36} to lowest terms by extracting and canceling out 2.
\frac{47}{18}\times \frac{5}{2}-\frac{\frac{4\times 3+1}{3}}{0,65}
Convert decimal number 2,5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{47\times 5}{18\times 2}-\frac{\frac{4\times 3+1}{3}}{0,65}
Multiply \frac{47}{18} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{235}{36}-\frac{\frac{4\times 3+1}{3}}{0,65}
Do the multiplications in the fraction \frac{47\times 5}{18\times 2}.
\frac{235}{36}-\frac{4\times 3+1}{3\times 0,65}
Express \frac{\frac{4\times 3+1}{3}}{0,65} as a single fraction.
\frac{235}{36}-\frac{12+1}{3\times 0,65}
Multiply 4 and 3 to get 12.
\frac{235}{36}-\frac{13}{3\times 0,65}
Add 12 and 1 to get 13.
\frac{235}{36}-\frac{13}{1,95}
Multiply 3 and 0,65 to get 1,95.
\frac{235}{36}-\frac{1300}{195}
Expand \frac{13}{1,95} by multiplying both numerator and the denominator by 100.
\frac{235}{36}-\frac{20}{3}
Reduce the fraction \frac{1300}{195} to lowest terms by extracting and canceling out 65.
\frac{235}{36}-\frac{240}{36}
Least common multiple of 36 and 3 is 36. Convert \frac{235}{36} and \frac{20}{3} to fractions with denominator 36.
\frac{235-240}{36}
Since \frac{235}{36} and \frac{240}{36} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{36}
Subtract 240 from 235 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}