Evaluate
\frac{\left(a+4\right)\left(a^{3}+9\right)}{3a^{4}}
Expand
\frac{1}{3}+\frac{4}{3a}+\frac{3}{a^{3}}+\frac{12}{a^{4}}
Share
Copied to clipboard
\frac{\frac{1}{6}+\left(6a\right)^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\frac{1}{6}+6^{-1}a^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Expand \left(6a\right)^{-1}.
\frac{\frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\left(\frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2}\right)\left(18a^{-2}+2a\right)}{a-3}
Divide \frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2} by \frac{a-3}{18a^{-2}+2a} by multiplying \frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2} by the reciprocal of \frac{a-3}{18a^{-2}+2a}.
\frac{\frac{1}{6}\times 2\left(a^{-2}\right)^{2}\left(a-3\right)\left(a+4\right)\left(a^{3}+9\right)}{a-3}
Factor the expressions that are not already factored.
\frac{1}{6}\times 2\left(a^{-2}\right)^{2}\left(a+4\right)\left(a^{3}+9\right)
Cancel out a-3 in both numerator and denominator.
\frac{1}{3}+\frac{4}{3}\times \frac{1}{a}+3a^{-3}+12a^{-4}
Expand the expression.
\frac{1}{3}+\frac{4}{3a}+3a^{-3}+12a^{-4}
Multiply \frac{4}{3} times \frac{1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{a}{3a}+\frac{4}{3a}+3a^{-3}+12a^{-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3a is 3a. Multiply \frac{1}{3} times \frac{a}{a}.
\frac{a+4}{3a}+3a^{-3}+12a^{-4}
Since \frac{a}{3a} and \frac{4}{3a} have the same denominator, add them by adding their numerators.
\frac{a+4}{3a}+\frac{\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a^{-3}+12a^{-4} times \frac{3a}{3a}.
\frac{a+4+\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a}
Since \frac{a+4}{3a} and \frac{\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a} have the same denominator, add them by adding their numerators.
\frac{a+4+9a^{-2}+36a^{-3}}{3a}
Do the multiplications in a+4+\left(3a^{-3}+12a^{-4}\right)\times 3a.
\frac{a+4+\left(36+9a\right)a^{-3}}{3a}
Combine like terms in a+4+9a^{-2}+36a^{-3}.
\frac{a^{-3}\left(a+4\right)\left(a^{3}+9\right)}{3a}
Factor the expressions that are not already factored in \frac{a+4+\left(36+9a\right)a^{-3}}{3a}.
\frac{\left(a+4\right)\left(a^{3}+9\right)}{3a^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a^{4}+9a+4a^{3}+36}{3a^{4}}
Use the distributive property to multiply a+4 by a^{3}+9.
\frac{\frac{1}{6}+\left(6a\right)^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\frac{1}{6}+6^{-1}a^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Expand \left(6a\right)^{-1}.
\frac{\frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2}}{\frac{a-3}{18a^{-2}+2a}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\left(\frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2}\right)\left(18a^{-2}+2a\right)}{a-3}
Divide \frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2} by \frac{a-3}{18a^{-2}+2a} by multiplying \frac{1}{6}+\frac{1}{6}a^{-1}-2a^{-2} by the reciprocal of \frac{a-3}{18a^{-2}+2a}.
\frac{\frac{1}{6}\times 2\left(a^{-2}\right)^{2}\left(a-3\right)\left(a+4\right)\left(a^{3}+9\right)}{a-3}
Factor the expressions that are not already factored.
\frac{1}{6}\times 2\left(a^{-2}\right)^{2}\left(a+4\right)\left(a^{3}+9\right)
Cancel out a-3 in both numerator and denominator.
\frac{1}{3}+\frac{4}{3}\times \frac{1}{a}+3a^{-3}+12a^{-4}
Expand the expression.
\frac{1}{3}+\frac{4}{3a}+3a^{-3}+12a^{-4}
Multiply \frac{4}{3} times \frac{1}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{a}{3a}+\frac{4}{3a}+3a^{-3}+12a^{-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3a is 3a. Multiply \frac{1}{3} times \frac{a}{a}.
\frac{a+4}{3a}+3a^{-3}+12a^{-4}
Since \frac{a}{3a} and \frac{4}{3a} have the same denominator, add them by adding their numerators.
\frac{a+4}{3a}+\frac{\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a^{-3}+12a^{-4} times \frac{3a}{3a}.
\frac{a+4+\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a}
Since \frac{a+4}{3a} and \frac{\left(3a^{-3}+12a^{-4}\right)\times 3a}{3a} have the same denominator, add them by adding their numerators.
\frac{a+4+9a^{-2}+36a^{-3}}{3a}
Do the multiplications in a+4+\left(3a^{-3}+12a^{-4}\right)\times 3a.
\frac{a+4+\left(36+9a\right)a^{-3}}{3a}
Combine like terms in a+4+9a^{-2}+36a^{-3}.
\frac{a^{-3}\left(a+4\right)\left(a^{3}+9\right)}{3a}
Factor the expressions that are not already factored in \frac{a+4+\left(36+9a\right)a^{-3}}{3a}.
\frac{\left(a+4\right)\left(a^{3}+9\right)}{3a^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a^{4}+9a+4a^{3}+36}{3a^{4}}
Use the distributive property to multiply a+4 by a^{3}+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}