Solve for a
a=\frac{\sqrt{262}i}{28}-\frac{3}{7}\approx -0.428571429+0.578086216i
a=-\frac{\sqrt{262}i}{28}-\frac{3}{7}\approx -0.428571429-0.578086216i
Share
Copied to clipboard
36+192a+256a^{2}-4\times 4\left(2a^{2}-5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+16a\right)^{2}.
36+192a+256a^{2}-16\left(2a^{2}-5\right)=0
Multiply 4 and 4 to get 16.
36+192a+256a^{2}-32a^{2}+80=0
Use the distributive property to multiply -16 by 2a^{2}-5.
36+192a+224a^{2}+80=0
Combine 256a^{2} and -32a^{2} to get 224a^{2}.
116+192a+224a^{2}=0
Add 36 and 80 to get 116.
224a^{2}+192a+116=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-192±\sqrt{192^{2}-4\times 224\times 116}}{2\times 224}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 224 for a, 192 for b, and 116 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-192±\sqrt{36864-4\times 224\times 116}}{2\times 224}
Square 192.
a=\frac{-192±\sqrt{36864-896\times 116}}{2\times 224}
Multiply -4 times 224.
a=\frac{-192±\sqrt{36864-103936}}{2\times 224}
Multiply -896 times 116.
a=\frac{-192±\sqrt{-67072}}{2\times 224}
Add 36864 to -103936.
a=\frac{-192±16\sqrt{262}i}{2\times 224}
Take the square root of -67072.
a=\frac{-192±16\sqrt{262}i}{448}
Multiply 2 times 224.
a=\frac{-192+16\sqrt{262}i}{448}
Now solve the equation a=\frac{-192±16\sqrt{262}i}{448} when ± is plus. Add -192 to 16i\sqrt{262}.
a=\frac{\sqrt{262}i}{28}-\frac{3}{7}
Divide -192+16i\sqrt{262} by 448.
a=\frac{-16\sqrt{262}i-192}{448}
Now solve the equation a=\frac{-192±16\sqrt{262}i}{448} when ± is minus. Subtract 16i\sqrt{262} from -192.
a=-\frac{\sqrt{262}i}{28}-\frac{3}{7}
Divide -192-16i\sqrt{262} by 448.
a=\frac{\sqrt{262}i}{28}-\frac{3}{7} a=-\frac{\sqrt{262}i}{28}-\frac{3}{7}
The equation is now solved.
36+192a+256a^{2}-4\times 4\left(2a^{2}-5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6+16a\right)^{2}.
36+192a+256a^{2}-16\left(2a^{2}-5\right)=0
Multiply 4 and 4 to get 16.
36+192a+256a^{2}-32a^{2}+80=0
Use the distributive property to multiply -16 by 2a^{2}-5.
36+192a+224a^{2}+80=0
Combine 256a^{2} and -32a^{2} to get 224a^{2}.
116+192a+224a^{2}=0
Add 36 and 80 to get 116.
192a+224a^{2}=-116
Subtract 116 from both sides. Anything subtracted from zero gives its negation.
224a^{2}+192a=-116
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{224a^{2}+192a}{224}=-\frac{116}{224}
Divide both sides by 224.
a^{2}+\frac{192}{224}a=-\frac{116}{224}
Dividing by 224 undoes the multiplication by 224.
a^{2}+\frac{6}{7}a=-\frac{116}{224}
Reduce the fraction \frac{192}{224} to lowest terms by extracting and canceling out 32.
a^{2}+\frac{6}{7}a=-\frac{29}{56}
Reduce the fraction \frac{-116}{224} to lowest terms by extracting and canceling out 4.
a^{2}+\frac{6}{7}a+\left(\frac{3}{7}\right)^{2}=-\frac{29}{56}+\left(\frac{3}{7}\right)^{2}
Divide \frac{6}{7}, the coefficient of the x term, by 2 to get \frac{3}{7}. Then add the square of \frac{3}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{6}{7}a+\frac{9}{49}=-\frac{29}{56}+\frac{9}{49}
Square \frac{3}{7} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{6}{7}a+\frac{9}{49}=-\frac{131}{392}
Add -\frac{29}{56} to \frac{9}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{3}{7}\right)^{2}=-\frac{131}{392}
Factor a^{2}+\frac{6}{7}a+\frac{9}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{7}\right)^{2}}=\sqrt{-\frac{131}{392}}
Take the square root of both sides of the equation.
a+\frac{3}{7}=\frac{\sqrt{262}i}{28} a+\frac{3}{7}=-\frac{\sqrt{262}i}{28}
Simplify.
a=\frac{\sqrt{262}i}{28}-\frac{3}{7} a=-\frac{\sqrt{262}i}{28}-\frac{3}{7}
Subtract \frac{3}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}