Solve for f
\left\{\begin{matrix}\\f=\frac{509}{9}\approx 56.555555556\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&u=0\end{matrix}\right.
Solve for u
\left\{\begin{matrix}\\u=0\text{, }&\text{unconditionally}\\u\in \mathrm{R}\text{, }&f=\frac{509}{9}\end{matrix}\right.
Share
Copied to clipboard
f\times 9u=509u
Swap sides so that all variable terms are on the left hand side.
9uf=509u
The equation is in standard form.
\frac{9uf}{9u}=\frac{509u}{9u}
Divide both sides by 9u.
f=\frac{509u}{9u}
Dividing by 9u undoes the multiplication by 9u.
f=\frac{509}{9}
Divide 509u by 9u.
509u-f\times 9u=0
Subtract f\times 9u from both sides.
509u-9fu=0
Multiply -1 and 9 to get -9.
\left(509-9f\right)u=0
Combine all terms containing u.
u=0
Divide 0 by 509-9f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}