Solve for x
x=75-8\sqrt{6910}\approx -590.0112781
x=8\sqrt{6910}+75\approx 740.0112781
Graph
Share
Copied to clipboard
5000-150x+x^{2}=88.323\times 100\times 50
Use the distributive property to multiply 50-x by 100-x and combine like terms.
5000-150x+x^{2}=8832.3\times 50
Multiply 88.323 and 100 to get 8832.3.
5000-150x+x^{2}=441615
Multiply 8832.3 and 50 to get 441615.
5000-150x+x^{2}-441615=0
Subtract 441615 from both sides.
-436615-150x+x^{2}=0
Subtract 441615 from 5000 to get -436615.
x^{2}-150x-436615=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\left(-436615\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -150 for b, and -436615 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-150\right)±\sqrt{22500-4\left(-436615\right)}}{2}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500+1746460}}{2}
Multiply -4 times -436615.
x=\frac{-\left(-150\right)±\sqrt{1768960}}{2}
Add 22500 to 1746460.
x=\frac{-\left(-150\right)±16\sqrt{6910}}{2}
Take the square root of 1768960.
x=\frac{150±16\sqrt{6910}}{2}
The opposite of -150 is 150.
x=\frac{16\sqrt{6910}+150}{2}
Now solve the equation x=\frac{150±16\sqrt{6910}}{2} when ± is plus. Add 150 to 16\sqrt{6910}.
x=8\sqrt{6910}+75
Divide 150+16\sqrt{6910} by 2.
x=\frac{150-16\sqrt{6910}}{2}
Now solve the equation x=\frac{150±16\sqrt{6910}}{2} when ± is minus. Subtract 16\sqrt{6910} from 150.
x=75-8\sqrt{6910}
Divide 150-16\sqrt{6910} by 2.
x=8\sqrt{6910}+75 x=75-8\sqrt{6910}
The equation is now solved.
5000-150x+x^{2}=88.323\times 100\times 50
Use the distributive property to multiply 50-x by 100-x and combine like terms.
5000-150x+x^{2}=8832.3\times 50
Multiply 88.323 and 100 to get 8832.3.
5000-150x+x^{2}=441615
Multiply 8832.3 and 50 to get 441615.
-150x+x^{2}=441615-5000
Subtract 5000 from both sides.
-150x+x^{2}=436615
Subtract 5000 from 441615 to get 436615.
x^{2}-150x=436615
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-150x+\left(-75\right)^{2}=436615+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-150x+5625=436615+5625
Square -75.
x^{2}-150x+5625=442240
Add 436615 to 5625.
\left(x-75\right)^{2}=442240
Factor x^{2}-150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-75\right)^{2}}=\sqrt{442240}
Take the square root of both sides of the equation.
x-75=8\sqrt{6910} x-75=-8\sqrt{6910}
Simplify.
x=8\sqrt{6910}+75 x=75-8\sqrt{6910}
Add 75 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}