Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

500m+50000-10m^{2}=54000
Use the distributive property to multiply 50-\frac{1}{2}m by 20m+1000 and combine like terms.
500m+50000-10m^{2}-54000=0
Subtract 54000 from both sides.
500m-4000-10m^{2}=0
Subtract 54000 from 50000 to get -4000.
-10m^{2}+500m-4000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-500±\sqrt{500^{2}-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 500 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-500±\sqrt{250000-4\left(-10\right)\left(-4000\right)}}{2\left(-10\right)}
Square 500.
m=\frac{-500±\sqrt{250000+40\left(-4000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
m=\frac{-500±\sqrt{250000-160000}}{2\left(-10\right)}
Multiply 40 times -4000.
m=\frac{-500±\sqrt{90000}}{2\left(-10\right)}
Add 250000 to -160000.
m=\frac{-500±300}{2\left(-10\right)}
Take the square root of 90000.
m=\frac{-500±300}{-20}
Multiply 2 times -10.
m=-\frac{200}{-20}
Now solve the equation m=\frac{-500±300}{-20} when ± is plus. Add -500 to 300.
m=10
Divide -200 by -20.
m=-\frac{800}{-20}
Now solve the equation m=\frac{-500±300}{-20} when ± is minus. Subtract 300 from -500.
m=40
Divide -800 by -20.
m=10 m=40
The equation is now solved.
500m+50000-10m^{2}=54000
Use the distributive property to multiply 50-\frac{1}{2}m by 20m+1000 and combine like terms.
500m-10m^{2}=54000-50000
Subtract 50000 from both sides.
500m-10m^{2}=4000
Subtract 50000 from 54000 to get 4000.
-10m^{2}+500m=4000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10m^{2}+500m}{-10}=\frac{4000}{-10}
Divide both sides by -10.
m^{2}+\frac{500}{-10}m=\frac{4000}{-10}
Dividing by -10 undoes the multiplication by -10.
m^{2}-50m=\frac{4000}{-10}
Divide 500 by -10.
m^{2}-50m=-400
Divide 4000 by -10.
m^{2}-50m+\left(-25\right)^{2}=-400+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-50m+625=-400+625
Square -25.
m^{2}-50m+625=225
Add -400 to 625.
\left(m-25\right)^{2}=225
Factor m^{2}-50m+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-25\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
m-25=15 m-25=-15
Simplify.
m=40 m=10
Add 25 to both sides of the equation.