Solve for x
x=10
x=30
Graph
Share
Copied to clipboard
25000-10x^{2}-40\left(500-10x\right)=8000
Use the distributive property to multiply 50+x by 500-10x and combine like terms.
25000-10x^{2}-20000+400x=8000
Use the distributive property to multiply -40 by 500-10x.
5000-10x^{2}+400x=8000
Subtract 20000 from 25000 to get 5000.
5000-10x^{2}+400x-8000=0
Subtract 8000 from both sides.
-3000-10x^{2}+400x=0
Subtract 8000 from 5000 to get -3000.
-10x^{2}+400x-3000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-400±\sqrt{400^{2}-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 400 for b, and -3000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\left(-10\right)\left(-3000\right)}}{2\left(-10\right)}
Square 400.
x=\frac{-400±\sqrt{160000+40\left(-3000\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-400±\sqrt{160000-120000}}{2\left(-10\right)}
Multiply 40 times -3000.
x=\frac{-400±\sqrt{40000}}{2\left(-10\right)}
Add 160000 to -120000.
x=\frac{-400±200}{2\left(-10\right)}
Take the square root of 40000.
x=\frac{-400±200}{-20}
Multiply 2 times -10.
x=-\frac{200}{-20}
Now solve the equation x=\frac{-400±200}{-20} when ± is plus. Add -400 to 200.
x=10
Divide -200 by -20.
x=-\frac{600}{-20}
Now solve the equation x=\frac{-400±200}{-20} when ± is minus. Subtract 200 from -400.
x=30
Divide -600 by -20.
x=10 x=30
The equation is now solved.
25000-10x^{2}-40\left(500-10x\right)=8000
Use the distributive property to multiply 50+x by 500-10x and combine like terms.
25000-10x^{2}-20000+400x=8000
Use the distributive property to multiply -40 by 500-10x.
5000-10x^{2}+400x=8000
Subtract 20000 from 25000 to get 5000.
-10x^{2}+400x=8000-5000
Subtract 5000 from both sides.
-10x^{2}+400x=3000
Subtract 5000 from 8000 to get 3000.
\frac{-10x^{2}+400x}{-10}=\frac{3000}{-10}
Divide both sides by -10.
x^{2}+\frac{400}{-10}x=\frac{3000}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-40x=\frac{3000}{-10}
Divide 400 by -10.
x^{2}-40x=-300
Divide 3000 by -10.
x^{2}-40x+\left(-20\right)^{2}=-300+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-300+400
Square -20.
x^{2}-40x+400=100
Add -300 to 400.
\left(x-20\right)^{2}=100
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-20=10 x-20=-10
Simplify.
x=30 x=10
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}