Solve for z
z=\frac{3}{8}=0.375
z = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
25z^{2}-30z+9-9z^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5z-3\right)^{2}.
16z^{2}-30z+9=0
Combine 25z^{2} and -9z^{2} to get 16z^{2}.
a+b=-30 ab=16\times 9=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 16z^{2}+az+bz+9. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-24 b=-6
The solution is the pair that gives sum -30.
\left(16z^{2}-24z\right)+\left(-6z+9\right)
Rewrite 16z^{2}-30z+9 as \left(16z^{2}-24z\right)+\left(-6z+9\right).
8z\left(2z-3\right)-3\left(2z-3\right)
Factor out 8z in the first and -3 in the second group.
\left(2z-3\right)\left(8z-3\right)
Factor out common term 2z-3 by using distributive property.
z=\frac{3}{2} z=\frac{3}{8}
To find equation solutions, solve 2z-3=0 and 8z-3=0.
25z^{2}-30z+9-9z^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5z-3\right)^{2}.
16z^{2}-30z+9=0
Combine 25z^{2} and -9z^{2} to get 16z^{2}.
z=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 16\times 9}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -30 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-30\right)±\sqrt{900-4\times 16\times 9}}{2\times 16}
Square -30.
z=\frac{-\left(-30\right)±\sqrt{900-64\times 9}}{2\times 16}
Multiply -4 times 16.
z=\frac{-\left(-30\right)±\sqrt{900-576}}{2\times 16}
Multiply -64 times 9.
z=\frac{-\left(-30\right)±\sqrt{324}}{2\times 16}
Add 900 to -576.
z=\frac{-\left(-30\right)±18}{2\times 16}
Take the square root of 324.
z=\frac{30±18}{2\times 16}
The opposite of -30 is 30.
z=\frac{30±18}{32}
Multiply 2 times 16.
z=\frac{48}{32}
Now solve the equation z=\frac{30±18}{32} when ± is plus. Add 30 to 18.
z=\frac{3}{2}
Reduce the fraction \frac{48}{32} to lowest terms by extracting and canceling out 16.
z=\frac{12}{32}
Now solve the equation z=\frac{30±18}{32} when ± is minus. Subtract 18 from 30.
z=\frac{3}{8}
Reduce the fraction \frac{12}{32} to lowest terms by extracting and canceling out 4.
z=\frac{3}{2} z=\frac{3}{8}
The equation is now solved.
25z^{2}-30z+9-9z^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5z-3\right)^{2}.
16z^{2}-30z+9=0
Combine 25z^{2} and -9z^{2} to get 16z^{2}.
16z^{2}-30z=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{16z^{2}-30z}{16}=-\frac{9}{16}
Divide both sides by 16.
z^{2}+\left(-\frac{30}{16}\right)z=-\frac{9}{16}
Dividing by 16 undoes the multiplication by 16.
z^{2}-\frac{15}{8}z=-\frac{9}{16}
Reduce the fraction \frac{-30}{16} to lowest terms by extracting and canceling out 2.
z^{2}-\frac{15}{8}z+\left(-\frac{15}{16}\right)^{2}=-\frac{9}{16}+\left(-\frac{15}{16}\right)^{2}
Divide -\frac{15}{8}, the coefficient of the x term, by 2 to get -\frac{15}{16}. Then add the square of -\frac{15}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{15}{8}z+\frac{225}{256}=-\frac{9}{16}+\frac{225}{256}
Square -\frac{15}{16} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{15}{8}z+\frac{225}{256}=\frac{81}{256}
Add -\frac{9}{16} to \frac{225}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(z-\frac{15}{16}\right)^{2}=\frac{81}{256}
Factor z^{2}-\frac{15}{8}z+\frac{225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{15}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Take the square root of both sides of the equation.
z-\frac{15}{16}=\frac{9}{16} z-\frac{15}{16}=-\frac{9}{16}
Simplify.
z=\frac{3}{2} z=\frac{3}{8}
Add \frac{15}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}