Evaluate
-10y\left(5y+1\right)
Expand
-50y^{2}-10y
Graph
Share
Copied to clipboard
1-\left(5y\right)^{2}-\left(1+5y\right)^{2}
Consider \left(5y+1\right)\left(1-5y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-5^{2}y^{2}-\left(1+5y\right)^{2}
Expand \left(5y\right)^{2}.
1-25y^{2}-\left(1+5y\right)^{2}
Calculate 5 to the power of 2 and get 25.
1-25y^{2}-\left(1+10y+25y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+5y\right)^{2}.
1-25y^{2}-1-10y-25y^{2}
To find the opposite of 1+10y+25y^{2}, find the opposite of each term.
-25y^{2}-10y-25y^{2}
Subtract 1 from 1 to get 0.
-50y^{2}-10y
Combine -25y^{2} and -25y^{2} to get -50y^{2}.
1-\left(5y\right)^{2}-\left(1+5y\right)^{2}
Consider \left(5y+1\right)\left(1-5y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-5^{2}y^{2}-\left(1+5y\right)^{2}
Expand \left(5y\right)^{2}.
1-25y^{2}-\left(1+5y\right)^{2}
Calculate 5 to the power of 2 and get 25.
1-25y^{2}-\left(1+10y+25y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+5y\right)^{2}.
1-25y^{2}-1-10y-25y^{2}
To find the opposite of 1+10y+25y^{2}, find the opposite of each term.
-25y^{2}-10y-25y^{2}
Subtract 1 from 1 to get 0.
-50y^{2}-10y
Combine -25y^{2} and -25y^{2} to get -50y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}