Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(5x\right)^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Consider \left(5x-y\right)\left(y+5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5^{2}x^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Expand \left(5x\right)^{2}.
25x^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Calculate 5 to the power of 2 and get 25.
25x^{2}-y^{2}-\left(\left(3y\right)^{2}-\left(2x\right)^{2}\right)
Consider \left(3y+2x\right)\left(3y-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25x^{2}-y^{2}-\left(3^{2}y^{2}-\left(2x\right)^{2}\right)
Expand \left(3y\right)^{2}.
25x^{2}-y^{2}-\left(9y^{2}-\left(2x\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
25x^{2}-y^{2}-\left(9y^{2}-2^{2}x^{2}\right)
Expand \left(2x\right)^{2}.
25x^{2}-y^{2}-\left(9y^{2}-4x^{2}\right)
Calculate 2 to the power of 2 and get 4.
25x^{2}-y^{2}-9y^{2}-\left(-4x^{2}\right)
To find the opposite of 9y^{2}-4x^{2}, find the opposite of each term.
25x^{2}-y^{2}-9y^{2}+4x^{2}
The opposite of -4x^{2} is 4x^{2}.
25x^{2}-10y^{2}+4x^{2}
Combine -y^{2} and -9y^{2} to get -10y^{2}.
29x^{2}-10y^{2}
Combine 25x^{2} and 4x^{2} to get 29x^{2}.
\left(5x\right)^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Consider \left(5x-y\right)\left(y+5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5^{2}x^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Expand \left(5x\right)^{2}.
25x^{2}-y^{2}-\left(3y+2x\right)\left(3y-2x\right)
Calculate 5 to the power of 2 and get 25.
25x^{2}-y^{2}-\left(\left(3y\right)^{2}-\left(2x\right)^{2}\right)
Consider \left(3y+2x\right)\left(3y-2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25x^{2}-y^{2}-\left(3^{2}y^{2}-\left(2x\right)^{2}\right)
Expand \left(3y\right)^{2}.
25x^{2}-y^{2}-\left(9y^{2}-\left(2x\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
25x^{2}-y^{2}-\left(9y^{2}-2^{2}x^{2}\right)
Expand \left(2x\right)^{2}.
25x^{2}-y^{2}-\left(9y^{2}-4x^{2}\right)
Calculate 2 to the power of 2 and get 4.
25x^{2}-y^{2}-9y^{2}-\left(-4x^{2}\right)
To find the opposite of 9y^{2}-4x^{2}, find the opposite of each term.
25x^{2}-y^{2}-9y^{2}+4x^{2}
The opposite of -4x^{2} is 4x^{2}.
25x^{2}-10y^{2}+4x^{2}
Combine -y^{2} and -9y^{2} to get -10y^{2}.
29x^{2}-10y^{2}
Combine 25x^{2} and 4x^{2} to get 29x^{2}.