Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+2x-3=x\left(2x-5\right)
Use the distributive property to multiply 5x-3 by x+1 and combine like terms.
5x^{2}+2x-3=2x^{2}-5x
Use the distributive property to multiply x by 2x-5.
5x^{2}+2x-3-2x^{2}=-5x
Subtract 2x^{2} from both sides.
3x^{2}+2x-3=-5x
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+2x-3+5x=0
Add 5x to both sides.
3x^{2}+7x-3=0
Combine 2x and 5x to get 7x.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 7 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 3\left(-3\right)}}{2\times 3}
Square 7.
x=\frac{-7±\sqrt{49-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-7±\sqrt{49+36}}{2\times 3}
Multiply -12 times -3.
x=\frac{-7±\sqrt{85}}{2\times 3}
Add 49 to 36.
x=\frac{-7±\sqrt{85}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{85}-7}{6}
Now solve the equation x=\frac{-7±\sqrt{85}}{6} when ± is plus. Add -7 to \sqrt{85}.
x=\frac{-\sqrt{85}-7}{6}
Now solve the equation x=\frac{-7±\sqrt{85}}{6} when ± is minus. Subtract \sqrt{85} from -7.
x=\frac{\sqrt{85}-7}{6} x=\frac{-\sqrt{85}-7}{6}
The equation is now solved.
5x^{2}+2x-3=x\left(2x-5\right)
Use the distributive property to multiply 5x-3 by x+1 and combine like terms.
5x^{2}+2x-3=2x^{2}-5x
Use the distributive property to multiply x by 2x-5.
5x^{2}+2x-3-2x^{2}=-5x
Subtract 2x^{2} from both sides.
3x^{2}+2x-3=-5x
Combine 5x^{2} and -2x^{2} to get 3x^{2}.
3x^{2}+2x-3+5x=0
Add 5x to both sides.
3x^{2}+7x-3=0
Combine 2x and 5x to get 7x.
3x^{2}+7x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+7x}{3}=\frac{3}{3}
Divide both sides by 3.
x^{2}+\frac{7}{3}x=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{7}{3}x=1
Divide 3 by 3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=1+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=1+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{85}{36}
Add 1 to \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=\frac{85}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{85}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{85}}{6} x+\frac{7}{6}=-\frac{\sqrt{85}}{6}
Simplify.
x=\frac{\sqrt{85}-7}{6} x=\frac{-\sqrt{85}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.