Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+13x-6=13\left(x-3\right)
Use the distributive property to multiply 5x-2 by x+3 and combine like terms.
5x^{2}+13x-6=13x-39
Use the distributive property to multiply 13 by x-3.
5x^{2}+13x-6-13x=-39
Subtract 13x from both sides.
5x^{2}-6=-39
Combine 13x and -13x to get 0.
5x^{2}=-39+6
Add 6 to both sides.
5x^{2}=-33
Add -39 and 6 to get -33.
x^{2}=-\frac{33}{5}
Divide both sides by 5.
x=\frac{\sqrt{165}i}{5} x=-\frac{\sqrt{165}i}{5}
The equation is now solved.
5x^{2}+13x-6=13\left(x-3\right)
Use the distributive property to multiply 5x-2 by x+3 and combine like terms.
5x^{2}+13x-6=13x-39
Use the distributive property to multiply 13 by x-3.
5x^{2}+13x-6-13x=-39
Subtract 13x from both sides.
5x^{2}-6=-39
Combine 13x and -13x to get 0.
5x^{2}-6+39=0
Add 39 to both sides.
5x^{2}+33=0
Add -6 and 39 to get 33.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 33}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\times 33}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\times 33}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{-660}}{2\times 5}
Multiply -20 times 33.
x=\frac{0±2\sqrt{165}i}{2\times 5}
Take the square root of -660.
x=\frac{0±2\sqrt{165}i}{10}
Multiply 2 times 5.
x=\frac{\sqrt{165}i}{5}
Now solve the equation x=\frac{0±2\sqrt{165}i}{10} when ± is plus.
x=-\frac{\sqrt{165}i}{5}
Now solve the equation x=\frac{0±2\sqrt{165}i}{10} when ± is minus.
x=\frac{\sqrt{165}i}{5} x=-\frac{\sqrt{165}i}{5}
The equation is now solved.