Solve for x
x=-\frac{1}{4}=-0.25
x=3
Graph
Share
Copied to clipboard
25x^{2}-20x+4-\left(3x+4\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(9x^{2}+24x+16\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
25x^{2}-20x+4-9x^{2}-24x-16=0
To find the opposite of 9x^{2}+24x+16, find the opposite of each term.
16x^{2}-20x+4-24x-16=0
Combine 25x^{2} and -9x^{2} to get 16x^{2}.
16x^{2}-44x+4-16=0
Combine -20x and -24x to get -44x.
16x^{2}-44x-12=0
Subtract 16 from 4 to get -12.
4x^{2}-11x-3=0
Divide both sides by 4.
a+b=-11 ab=4\left(-3\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-12 b=1
The solution is the pair that gives sum -11.
\left(4x^{2}-12x\right)+\left(x-3\right)
Rewrite 4x^{2}-11x-3 as \left(4x^{2}-12x\right)+\left(x-3\right).
4x\left(x-3\right)+x-3
Factor out 4x in 4x^{2}-12x.
\left(x-3\right)\left(4x+1\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{1}{4}
To find equation solutions, solve x-3=0 and 4x+1=0.
25x^{2}-20x+4-\left(3x+4\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(9x^{2}+24x+16\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
25x^{2}-20x+4-9x^{2}-24x-16=0
To find the opposite of 9x^{2}+24x+16, find the opposite of each term.
16x^{2}-20x+4-24x-16=0
Combine 25x^{2} and -9x^{2} to get 16x^{2}.
16x^{2}-44x+4-16=0
Combine -20x and -24x to get -44x.
16x^{2}-44x-12=0
Subtract 16 from 4 to get -12.
x=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 16\left(-12\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -44 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-44\right)±\sqrt{1936-4\times 16\left(-12\right)}}{2\times 16}
Square -44.
x=\frac{-\left(-44\right)±\sqrt{1936-64\left(-12\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-44\right)±\sqrt{1936+768}}{2\times 16}
Multiply -64 times -12.
x=\frac{-\left(-44\right)±\sqrt{2704}}{2\times 16}
Add 1936 to 768.
x=\frac{-\left(-44\right)±52}{2\times 16}
Take the square root of 2704.
x=\frac{44±52}{2\times 16}
The opposite of -44 is 44.
x=\frac{44±52}{32}
Multiply 2 times 16.
x=\frac{96}{32}
Now solve the equation x=\frac{44±52}{32} when ± is plus. Add 44 to 52.
x=3
Divide 96 by 32.
x=-\frac{8}{32}
Now solve the equation x=\frac{44±52}{32} when ± is minus. Subtract 52 from 44.
x=-\frac{1}{4}
Reduce the fraction \frac{-8}{32} to lowest terms by extracting and canceling out 8.
x=3 x=-\frac{1}{4}
The equation is now solved.
25x^{2}-20x+4-\left(3x+4\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-2\right)^{2}.
25x^{2}-20x+4-\left(9x^{2}+24x+16\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
25x^{2}-20x+4-9x^{2}-24x-16=0
To find the opposite of 9x^{2}+24x+16, find the opposite of each term.
16x^{2}-20x+4-24x-16=0
Combine 25x^{2} and -9x^{2} to get 16x^{2}.
16x^{2}-44x+4-16=0
Combine -20x and -24x to get -44x.
16x^{2}-44x-12=0
Subtract 16 from 4 to get -12.
16x^{2}-44x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{16x^{2}-44x}{16}=\frac{12}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{44}{16}\right)x=\frac{12}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{11}{4}x=\frac{12}{16}
Reduce the fraction \frac{-44}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{11}{4}x=\frac{3}{4}
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{3}{4}+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{169}{64}
Add \frac{3}{4} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{8}\right)^{2}=\frac{169}{64}
Factor x^{2}-\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
Take the square root of both sides of the equation.
x-\frac{11}{8}=\frac{13}{8} x-\frac{11}{8}=-\frac{13}{8}
Simplify.
x=3 x=-\frac{1}{4}
Add \frac{11}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}