Solve for x
x=\frac{\sqrt{41}-1}{20}\approx 0.270156212
x=\frac{-\sqrt{41}-1}{20}\approx -0.370156212
Graph
Share
Copied to clipboard
10x^{2}+3x-1=2x
Use the distributive property to multiply 5x-1 by 2x+1 and combine like terms.
10x^{2}+3x-1-2x=0
Subtract 2x from both sides.
10x^{2}+x-1=0
Combine 3x and -2x to get x.
x=\frac{-1±\sqrt{1^{2}-4\times 10\left(-1\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 10\left(-1\right)}}{2\times 10}
Square 1.
x=\frac{-1±\sqrt{1-40\left(-1\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-1±\sqrt{1+40}}{2\times 10}
Multiply -40 times -1.
x=\frac{-1±\sqrt{41}}{2\times 10}
Add 1 to 40.
x=\frac{-1±\sqrt{41}}{20}
Multiply 2 times 10.
x=\frac{\sqrt{41}-1}{20}
Now solve the equation x=\frac{-1±\sqrt{41}}{20} when ± is plus. Add -1 to \sqrt{41}.
x=\frac{-\sqrt{41}-1}{20}
Now solve the equation x=\frac{-1±\sqrt{41}}{20} when ± is minus. Subtract \sqrt{41} from -1.
x=\frac{\sqrt{41}-1}{20} x=\frac{-\sqrt{41}-1}{20}
The equation is now solved.
10x^{2}+3x-1=2x
Use the distributive property to multiply 5x-1 by 2x+1 and combine like terms.
10x^{2}+3x-1-2x=0
Subtract 2x from both sides.
10x^{2}+x-1=0
Combine 3x and -2x to get x.
10x^{2}+x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{10x^{2}+x}{10}=\frac{1}{10}
Divide both sides by 10.
x^{2}+\frac{1}{10}x=\frac{1}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\frac{1}{10}+\left(\frac{1}{20}\right)^{2}
Divide \frac{1}{10}, the coefficient of the x term, by 2 to get \frac{1}{20}. Then add the square of \frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{1}{10}+\frac{1}{400}
Square \frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{41}{400}
Add \frac{1}{10} to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{20}\right)^{2}=\frac{41}{400}
Factor x^{2}+\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{41}{400}}
Take the square root of both sides of the equation.
x+\frac{1}{20}=\frac{\sqrt{41}}{20} x+\frac{1}{20}=-\frac{\sqrt{41}}{20}
Simplify.
x=\frac{\sqrt{41}-1}{20} x=\frac{-\sqrt{41}-1}{20}
Subtract \frac{1}{20} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}