Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5^{2}x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=2^{2}x^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(2x\right)^{2}.
25x^{2}=4x^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
25x^{2}=4x^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+4\times 2
The square of \sqrt{2} is 2.
25x^{2}=4x^{2}+8
Multiply 4 and 2 to get 8.
25x^{2}-4x^{2}=8
Subtract 4x^{2} from both sides.
21x^{2}=8
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
x^{2}=\frac{8}{21}
Divide both sides by 21.
x=\frac{2\sqrt{42}}{21} x=-\frac{2\sqrt{42}}{21}
Take the square root of both sides of the equation.
5^{2}x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=2^{2}x^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(2x\right)^{2}.
25x^{2}=4x^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
25x^{2}=4x^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+4\times 2
The square of \sqrt{2} is 2.
25x^{2}=4x^{2}+8
Multiply 4 and 2 to get 8.
25x^{2}-4x^{2}=8
Subtract 4x^{2} from both sides.
21x^{2}=8
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
21x^{2}-8=0
Subtract 8 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 21\left(-8\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21\left(-8\right)}}{2\times 21}
Square 0.
x=\frac{0±\sqrt{-84\left(-8\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{0±\sqrt{672}}{2\times 21}
Multiply -84 times -8.
x=\frac{0±4\sqrt{42}}{2\times 21}
Take the square root of 672.
x=\frac{0±4\sqrt{42}}{42}
Multiply 2 times 21.
x=\frac{2\sqrt{42}}{21}
Now solve the equation x=\frac{0±4\sqrt{42}}{42} when ± is plus.
x=-\frac{2\sqrt{42}}{21}
Now solve the equation x=\frac{0±4\sqrt{42}}{42} when ± is minus.
x=\frac{2\sqrt{42}}{21} x=-\frac{2\sqrt{42}}{21}
The equation is now solved.