Solve for x
x=\frac{2\sqrt{42}}{21}\approx 0.6172134
x=-\frac{2\sqrt{42}}{21}\approx -0.6172134
Graph
Share
Copied to clipboard
5^{2}x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=2^{2}x^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(2x\right)^{2}.
25x^{2}=4x^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
25x^{2}=4x^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+4\times 2
The square of \sqrt{2} is 2.
25x^{2}=4x^{2}+8
Multiply 4 and 2 to get 8.
25x^{2}-4x^{2}=8
Subtract 4x^{2} from both sides.
21x^{2}=8
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
x^{2}=\frac{8}{21}
Divide both sides by 21.
x=\frac{2\sqrt{42}}{21} x=-\frac{2\sqrt{42}}{21}
Take the square root of both sides of the equation.
5^{2}x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}=\left(2x\right)^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}=2^{2}x^{2}+\left(2\sqrt{2}\right)^{2}
Expand \left(2x\right)^{2}.
25x^{2}=4x^{2}+\left(2\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+2^{2}\left(\sqrt{2}\right)^{2}
Expand \left(2\sqrt{2}\right)^{2}.
25x^{2}=4x^{2}+4\left(\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25x^{2}=4x^{2}+4\times 2
The square of \sqrt{2} is 2.
25x^{2}=4x^{2}+8
Multiply 4 and 2 to get 8.
25x^{2}-4x^{2}=8
Subtract 4x^{2} from both sides.
21x^{2}=8
Combine 25x^{2} and -4x^{2} to get 21x^{2}.
21x^{2}-8=0
Subtract 8 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 21\left(-8\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21\left(-8\right)}}{2\times 21}
Square 0.
x=\frac{0±\sqrt{-84\left(-8\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{0±\sqrt{672}}{2\times 21}
Multiply -84 times -8.
x=\frac{0±4\sqrt{42}}{2\times 21}
Take the square root of 672.
x=\frac{0±4\sqrt{42}}{42}
Multiply 2 times 21.
x=\frac{2\sqrt{42}}{21}
Now solve the equation x=\frac{0±4\sqrt{42}}{42} when ± is plus.
x=-\frac{2\sqrt{42}}{21}
Now solve the equation x=\frac{0±4\sqrt{42}}{42} when ± is minus.
x=\frac{2\sqrt{42}}{21} x=-\frac{2\sqrt{42}}{21}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}