Skip to main content
Solve for x
Tick mark Image
Solve for m
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{15\sqrt{2}}{\sqrt{m^{2}+4}}x=\sqrt{14-m^{2}}
The equation is in standard form.
\frac{\frac{15\sqrt{2}}{\sqrt{m^{2}+4}}x\sqrt{m^{2}+4}}{15\sqrt{2}}=\frac{\sqrt{14-m^{2}}\sqrt{m^{2}+4}}{15\sqrt{2}}
Divide both sides by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.
x=\frac{\sqrt{14-m^{2}}\sqrt{m^{2}+4}}{15\sqrt{2}}
Dividing by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2} undoes the multiplication by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.
x=\frac{\sqrt{2\left(14-m^{2}\right)\left(m^{2}+4\right)}}{30}
Divide \sqrt{14-m^{2}} by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.