Solve for x
x=\frac{\sqrt{112+20m^{2}-2m^{4}}}{30}
|m|\leq \sqrt{14}
Solve for m
\left\{\begin{matrix}m=\sqrt{3\sqrt{9-50x^{2}}+5}\text{; }m=-\sqrt{3\sqrt{9-50x^{2}}+5}\text{, }&x\geq 0\text{ and }x\leq \frac{3\sqrt{2}}{10}\\m=\sqrt{-3\sqrt{9-50x^{2}}+5}\text{; }m=-\sqrt{-3\sqrt{9-50x^{2}}+5}\text{, }&x\geq \frac{2\sqrt{7}}{15}\text{ and }x\leq \frac{3\sqrt{2}}{10}\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{15\sqrt{2}}{\sqrt{m^{2}+4}}x=\sqrt{14-m^{2}}
The equation is in standard form.
\frac{\frac{15\sqrt{2}}{\sqrt{m^{2}+4}}x\sqrt{m^{2}+4}}{15\sqrt{2}}=\frac{\sqrt{14-m^{2}}\sqrt{m^{2}+4}}{15\sqrt{2}}
Divide both sides by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.
x=\frac{\sqrt{14-m^{2}}\sqrt{m^{2}+4}}{15\sqrt{2}}
Dividing by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2} undoes the multiplication by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.
x=\frac{\sqrt{2\left(14-m^{2}\right)\left(m^{2}+4\right)}}{30}
Divide \sqrt{14-m^{2}} by 15\left(\sqrt{m^{2}+4}\right)^{-1}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}