Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-3x+9-13x-16
Combine 5x^{2} and -11x^{2} to get -6x^{2}.
-6x^{2}-16x+9-16
Combine -3x and -13x to get -16x.
-6x^{2}-16x-7
Subtract 16 from 9 to get -7.
factor(-6x^{2}-3x+9-13x-16)
Combine 5x^{2} and -11x^{2} to get -6x^{2}.
factor(-6x^{2}-16x+9-16)
Combine -3x and -13x to get -16x.
factor(-6x^{2}-16x-7)
Subtract 16 from 9 to get -7.
-6x^{2}-16x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-6\right)\left(-7\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-6\right)\left(-7\right)}}{2\left(-6\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+24\left(-7\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-16\right)±\sqrt{256-168}}{2\left(-6\right)}
Multiply 24 times -7.
x=\frac{-\left(-16\right)±\sqrt{88}}{2\left(-6\right)}
Add 256 to -168.
x=\frac{-\left(-16\right)±2\sqrt{22}}{2\left(-6\right)}
Take the square root of 88.
x=\frac{16±2\sqrt{22}}{2\left(-6\right)}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{22}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{22}+16}{-12}
Now solve the equation x=\frac{16±2\sqrt{22}}{-12} when ± is plus. Add 16 to 2\sqrt{22}.
x=-\frac{\sqrt{22}}{6}-\frac{4}{3}
Divide 16+2\sqrt{22} by -12.
x=\frac{16-2\sqrt{22}}{-12}
Now solve the equation x=\frac{16±2\sqrt{22}}{-12} when ± is minus. Subtract 2\sqrt{22} from 16.
x=\frac{\sqrt{22}}{6}-\frac{4}{3}
Divide 16-2\sqrt{22} by -12.
-6x^{2}-16x-7=-6\left(x-\left(-\frac{\sqrt{22}}{6}-\frac{4}{3}\right)\right)\left(x-\left(\frac{\sqrt{22}}{6}-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{3}-\frac{\sqrt{22}}{6} for x_{1} and -\frac{4}{3}+\frac{\sqrt{22}}{6} for x_{2}.