Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5\times 5}}{2\times 5}
Square 6.
x=\frac{-6±\sqrt{36-20\times 5}}{2\times 5}
Multiply -4 times 5.
x=\frac{-6±\sqrt{36-100}}{2\times 5}
Multiply -20 times 5.
x=\frac{-6±\sqrt{-64}}{2\times 5}
Add 36 to -100.
x=\frac{-6±8i}{2\times 5}
Take the square root of -64.
x=\frac{-6±8i}{10}
Multiply 2 times 5.
x=\frac{-6+8i}{10}
Now solve the equation x=\frac{-6±8i}{10} when ± is plus. Add -6 to 8i.
x=-\frac{3}{5}+\frac{4}{5}i
Divide -6+8i by 10.
x=\frac{-6-8i}{10}
Now solve the equation x=\frac{-6±8i}{10} when ± is minus. Subtract 8i from -6.
x=-\frac{3}{5}-\frac{4}{5}i
Divide -6-8i by 10.
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
The equation is now solved.
5x^{2}+6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5x^{2}+6x+5-5=-5
Subtract 5 from both sides of the equation.
5x^{2}+6x=-5
Subtracting 5 from itself leaves 0.
\frac{5x^{2}+6x}{5}=-\frac{5}{5}
Divide both sides by 5.
x^{2}+\frac{6}{5}x=-\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{6}{5}x=-1
Divide -5 by 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-1+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-1+\frac{9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{16}{25}
Add -1 to \frac{9}{25}.
\left(x+\frac{3}{5}\right)^{2}=-\frac{16}{25}
Factor x^{2}+\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{16}{25}}
Take the square root of both sides of the equation.
x+\frac{3}{5}=\frac{4}{5}i x+\frac{3}{5}=-\frac{4}{5}i
Simplify.
x=-\frac{3}{5}+\frac{4}{5}i x=-\frac{3}{5}-\frac{4}{5}i
Subtract \frac{3}{5} from both sides of the equation.