Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+35x+20-2x=4
Subtract 2x from both sides.
5x^{2}+33x+20=4
Combine 35x and -2x to get 33x.
5x^{2}+33x+20-4=0
Subtract 4 from both sides.
5x^{2}+33x+16=0
Subtract 4 from 20 to get 16.
x=\frac{-33±\sqrt{33^{2}-4\times 5\times 16}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 33 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\times 5\times 16}}{2\times 5}
Square 33.
x=\frac{-33±\sqrt{1089-20\times 16}}{2\times 5}
Multiply -4 times 5.
x=\frac{-33±\sqrt{1089-320}}{2\times 5}
Multiply -20 times 16.
x=\frac{-33±\sqrt{769}}{2\times 5}
Add 1089 to -320.
x=\frac{-33±\sqrt{769}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{769}-33}{10}
Now solve the equation x=\frac{-33±\sqrt{769}}{10} when ± is plus. Add -33 to \sqrt{769}.
x=\frac{-\sqrt{769}-33}{10}
Now solve the equation x=\frac{-33±\sqrt{769}}{10} when ± is minus. Subtract \sqrt{769} from -33.
x=\frac{\sqrt{769}-33}{10} x=\frac{-\sqrt{769}-33}{10}
The equation is now solved.
5x^{2}+35x+20-2x=4
Subtract 2x from both sides.
5x^{2}+33x+20=4
Combine 35x and -2x to get 33x.
5x^{2}+33x=4-20
Subtract 20 from both sides.
5x^{2}+33x=-16
Subtract 20 from 4 to get -16.
\frac{5x^{2}+33x}{5}=-\frac{16}{5}
Divide both sides by 5.
x^{2}+\frac{33}{5}x=-\frac{16}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{33}{5}x+\left(\frac{33}{10}\right)^{2}=-\frac{16}{5}+\left(\frac{33}{10}\right)^{2}
Divide \frac{33}{5}, the coefficient of the x term, by 2 to get \frac{33}{10}. Then add the square of \frac{33}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{33}{5}x+\frac{1089}{100}=-\frac{16}{5}+\frac{1089}{100}
Square \frac{33}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{33}{5}x+\frac{1089}{100}=\frac{769}{100}
Add -\frac{16}{5} to \frac{1089}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{33}{10}\right)^{2}=\frac{769}{100}
Factor x^{2}+\frac{33}{5}x+\frac{1089}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{33}{10}\right)^{2}}=\sqrt{\frac{769}{100}}
Take the square root of both sides of the equation.
x+\frac{33}{10}=\frac{\sqrt{769}}{10} x+\frac{33}{10}=-\frac{\sqrt{769}}{10}
Simplify.
x=\frac{\sqrt{769}-33}{10} x=\frac{-\sqrt{769}-33}{10}
Subtract \frac{33}{10} from both sides of the equation.