Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(5x^{-4}\right)^{-4}\times \left(2x^{3}\right)^{-5}
Use the rules of exponents to simplify the expression.
5^{-4}\left(x^{-4}\right)^{-4}\times 2^{-5}\left(x^{3}\right)^{-5}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
5^{-4}\times 2^{-5}\left(x^{-4}\right)^{-4}\left(x^{3}\right)^{-5}
Use the Commutative Property of Multiplication.
5^{-4}\times 2^{-5}x^{-4\left(-4\right)}x^{3\left(-5\right)}
To raise a power to another power, multiply the exponents.
5^{-4}\times 2^{-5}x^{16}x^{3\left(-5\right)}
Multiply -4 times -4.
5^{-4}\times 2^{-5}x^{16}x^{-15}
Multiply 3 times -5.
5^{-4}\times 2^{-5}x^{16-15}
To multiply powers of the same base, add their exponents.
5^{-4}\times 2^{-5}x^{1}
Add the exponents 16 and -15.
\frac{1}{625}\times 2^{-5}x^{1}
Raise 5 to the power -4.
\frac{1}{625}\times \frac{1}{32}x^{1}
Raise 2 to the power -5.
\frac{1}{20000}x^{1}
Multiply \frac{1}{625} times \frac{1}{32} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{1}{20000}x
For any term t, t^{1}=t.
\left(5x^{-4}\right)^{-4}\times \left(2x^{3}\right)^{-5}
Use the rules of exponents to simplify the expression.
5^{-4}\left(x^{-4}\right)^{-4}\times 2^{-5}\left(x^{3}\right)^{-5}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
5^{-4}\times 2^{-5}\left(x^{-4}\right)^{-4}\left(x^{3}\right)^{-5}
Use the Commutative Property of Multiplication.
5^{-4}\times 2^{-5}x^{-4\left(-4\right)}x^{3\left(-5\right)}
To raise a power to another power, multiply the exponents.
5^{-4}\times 2^{-5}x^{16}x^{3\left(-5\right)}
Multiply -4 times -4.
5^{-4}\times 2^{-5}x^{16}x^{-15}
Multiply 3 times -5.
5^{-4}\times 2^{-5}x^{16-15}
To multiply powers of the same base, add their exponents.
5^{-4}\times 2^{-5}x^{1}
Add the exponents 16 and -15.
\frac{1}{625}\times 2^{-5}x^{1}
Raise 5 to the power -4.
\frac{1}{625}\times \frac{1}{32}x^{1}
Raise 2 to the power -5.
\frac{1}{20000}x^{1}
Multiply \frac{1}{625} times \frac{1}{32} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{1}{20000}x
For any term t, t^{1}=t.