Evaluate
13y^{2}-15xy-29x^{2}
Expand
13y^{2}-15xy-29x^{2}
Share
Copied to clipboard
\left(3y\right)^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Consider \left(5x+3y\right)\left(3y-5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}y^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Expand \left(3y\right)^{2}.
9y^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Calculate 3 to the power of 2 and get 9.
9y^{2}-5^{2}x^{2}-\left(4x-y\right)\left(4y+x\right)
Expand \left(5x\right)^{2}.
9y^{2}-25x^{2}-\left(4x-y\right)\left(4y+x\right)
Calculate 5 to the power of 2 and get 25.
9y^{2}-25x^{2}-\left(16xy+4x^{2}-4y^{2}-yx\right)
Apply the distributive property by multiplying each term of 4x-y by each term of 4y+x.
9y^{2}-25x^{2}-\left(15xy+4x^{2}-4y^{2}\right)
Combine 16xy and -yx to get 15xy.
9y^{2}-25x^{2}-15xy-4x^{2}-\left(-4y^{2}\right)
To find the opposite of 15xy+4x^{2}-4y^{2}, find the opposite of each term.
9y^{2}-25x^{2}-15xy-4x^{2}+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
9y^{2}-29x^{2}-15xy+4y^{2}
Combine -25x^{2} and -4x^{2} to get -29x^{2}.
13y^{2}-29x^{2}-15xy
Combine 9y^{2} and 4y^{2} to get 13y^{2}.
\left(3y\right)^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Consider \left(5x+3y\right)\left(3y-5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}y^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Expand \left(3y\right)^{2}.
9y^{2}-\left(5x\right)^{2}-\left(4x-y\right)\left(4y+x\right)
Calculate 3 to the power of 2 and get 9.
9y^{2}-5^{2}x^{2}-\left(4x-y\right)\left(4y+x\right)
Expand \left(5x\right)^{2}.
9y^{2}-25x^{2}-\left(4x-y\right)\left(4y+x\right)
Calculate 5 to the power of 2 and get 25.
9y^{2}-25x^{2}-\left(16xy+4x^{2}-4y^{2}-yx\right)
Apply the distributive property by multiplying each term of 4x-y by each term of 4y+x.
9y^{2}-25x^{2}-\left(15xy+4x^{2}-4y^{2}\right)
Combine 16xy and -yx to get 15xy.
9y^{2}-25x^{2}-15xy-4x^{2}-\left(-4y^{2}\right)
To find the opposite of 15xy+4x^{2}-4y^{2}, find the opposite of each term.
9y^{2}-25x^{2}-15xy-4x^{2}+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
9y^{2}-29x^{2}-15xy+4y^{2}
Combine -25x^{2} and -4x^{2} to get -29x^{2}.
13y^{2}-29x^{2}-15xy
Combine 9y^{2} and 4y^{2} to get 13y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}