Solve for x
x=-1
Graph
Share
Copied to clipboard
25x^{2}+20x+4=\left(3+3x\right)^{2}+\left(1+4x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+2\right)^{2}.
25x^{2}+20x+4=9+18x+9x^{2}+\left(1+4x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+3x\right)^{2}.
25x^{2}+20x+4=9+18x+9x^{2}+1+8x+16x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+4x\right)^{2}.
25x^{2}+20x+4=10+18x+9x^{2}+8x+16x^{2}
Add 9 and 1 to get 10.
25x^{2}+20x+4=10+26x+9x^{2}+16x^{2}
Combine 18x and 8x to get 26x.
25x^{2}+20x+4=10+26x+25x^{2}
Combine 9x^{2} and 16x^{2} to get 25x^{2}.
25x^{2}+20x+4-26x=10+25x^{2}
Subtract 26x from both sides.
25x^{2}-6x+4=10+25x^{2}
Combine 20x and -26x to get -6x.
25x^{2}-6x+4-25x^{2}=10
Subtract 25x^{2} from both sides.
-6x+4=10
Combine 25x^{2} and -25x^{2} to get 0.
-6x=10-4
Subtract 4 from both sides.
-6x=6
Subtract 4 from 10 to get 6.
x=\frac{6}{-6}
Divide both sides by -6.
x=-1
Divide 6 by -6 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}