Solve for x
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Graph
Share
Copied to clipboard
25x^{2}+10x+1=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+1\right)^{2}.
25x^{2}+10x+1-100=0
Subtract 100 from both sides.
25x^{2}+10x-99=0
Subtract 100 from 1 to get -99.
a+b=10 ab=25\left(-99\right)=-2475
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx-99. To find a and b, set up a system to be solved.
-1,2475 -3,825 -5,495 -9,275 -11,225 -15,165 -25,99 -33,75 -45,55
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2475.
-1+2475=2474 -3+825=822 -5+495=490 -9+275=266 -11+225=214 -15+165=150 -25+99=74 -33+75=42 -45+55=10
Calculate the sum for each pair.
a=-45 b=55
The solution is the pair that gives sum 10.
\left(25x^{2}-45x\right)+\left(55x-99\right)
Rewrite 25x^{2}+10x-99 as \left(25x^{2}-45x\right)+\left(55x-99\right).
5x\left(5x-9\right)+11\left(5x-9\right)
Factor out 5x in the first and 11 in the second group.
\left(5x-9\right)\left(5x+11\right)
Factor out common term 5x-9 by using distributive property.
x=\frac{9}{5} x=-\frac{11}{5}
To find equation solutions, solve 5x-9=0 and 5x+11=0.
25x^{2}+10x+1=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+1\right)^{2}.
25x^{2}+10x+1-100=0
Subtract 100 from both sides.
25x^{2}+10x-99=0
Subtract 100 from 1 to get -99.
x=\frac{-10±\sqrt{10^{2}-4\times 25\left(-99\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 10 for b, and -99 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25\left(-99\right)}}{2\times 25}
Square 10.
x=\frac{-10±\sqrt{100-100\left(-99\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-10±\sqrt{100+9900}}{2\times 25}
Multiply -100 times -99.
x=\frac{-10±\sqrt{10000}}{2\times 25}
Add 100 to 9900.
x=\frac{-10±100}{2\times 25}
Take the square root of 10000.
x=\frac{-10±100}{50}
Multiply 2 times 25.
x=\frac{90}{50}
Now solve the equation x=\frac{-10±100}{50} when ± is plus. Add -10 to 100.
x=\frac{9}{5}
Reduce the fraction \frac{90}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{110}{50}
Now solve the equation x=\frac{-10±100}{50} when ± is minus. Subtract 100 from -10.
x=-\frac{11}{5}
Reduce the fraction \frac{-110}{50} to lowest terms by extracting and canceling out 10.
x=\frac{9}{5} x=-\frac{11}{5}
The equation is now solved.
25x^{2}+10x+1=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+1\right)^{2}.
25x^{2}+10x=100-1
Subtract 1 from both sides.
25x^{2}+10x=99
Subtract 1 from 100 to get 99.
\frac{25x^{2}+10x}{25}=\frac{99}{25}
Divide both sides by 25.
x^{2}+\frac{10}{25}x=\frac{99}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{2}{5}x=\frac{99}{25}
Reduce the fraction \frac{10}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{99}{25}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{99+1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=4
Add \frac{99}{25} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=4
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+\frac{1}{5}=2 x+\frac{1}{5}=-2
Simplify.
x=\frac{9}{5} x=-\frac{11}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}