Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}+5x\left(-\frac{2}{5}\right)+\frac{5}{9}\times 5x+\frac{5}{9}\left(-\frac{2}{5}\right)
Apply the distributive property by multiplying each term of 5x+\frac{5}{9} by each term of 5x-\frac{2}{5}.
25x^{2}-2x+\frac{5}{9}\times 5x+\frac{5}{9}\left(-\frac{2}{5}\right)
Cancel out 5 and 5.
25x^{2}-2x+\frac{5\times 5}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Express \frac{5}{9}\times 5 as a single fraction.
25x^{2}-2x+\frac{25}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Multiply 5 and 5 to get 25.
25x^{2}+\frac{7}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Combine -2x and \frac{25}{9}x to get \frac{7}{9}x.
25x^{2}+\frac{7}{9}x+\frac{5\left(-2\right)}{9\times 5}
Multiply \frac{5}{9} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
25x^{2}+\frac{7}{9}x+\frac{-2}{9}
Cancel out 5 in both numerator and denominator.
25x^{2}+\frac{7}{9}x-\frac{2}{9}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
25x^{2}+5x\left(-\frac{2}{5}\right)+\frac{5}{9}\times 5x+\frac{5}{9}\left(-\frac{2}{5}\right)
Apply the distributive property by multiplying each term of 5x+\frac{5}{9} by each term of 5x-\frac{2}{5}.
25x^{2}-2x+\frac{5}{9}\times 5x+\frac{5}{9}\left(-\frac{2}{5}\right)
Cancel out 5 and 5.
25x^{2}-2x+\frac{5\times 5}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Express \frac{5}{9}\times 5 as a single fraction.
25x^{2}-2x+\frac{25}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Multiply 5 and 5 to get 25.
25x^{2}+\frac{7}{9}x+\frac{5}{9}\left(-\frac{2}{5}\right)
Combine -2x and \frac{25}{9}x to get \frac{7}{9}x.
25x^{2}+\frac{7}{9}x+\frac{5\left(-2\right)}{9\times 5}
Multiply \frac{5}{9} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
25x^{2}+\frac{7}{9}x+\frac{-2}{9}
Cancel out 5 in both numerator and denominator.
25x^{2}+\frac{7}{9}x-\frac{2}{9}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.