Evaluate
2\left(w+5\right)\left(3w+5\right)
Expand
6w^{2}+40w+50
Share
Copied to clipboard
5w^{2}+25w+9w+45+\left(w+1\right)\left(w+5\right)
Apply the distributive property by multiplying each term of 5w+9 by each term of w+5.
5w^{2}+34w+45+\left(w+1\right)\left(w+5\right)
Combine 25w and 9w to get 34w.
5w^{2}+34w+45+w^{2}+5w+w+5
Apply the distributive property by multiplying each term of w+1 by each term of w+5.
5w^{2}+34w+45+w^{2}+6w+5
Combine 5w and w to get 6w.
6w^{2}+34w+45+6w+5
Combine 5w^{2} and w^{2} to get 6w^{2}.
6w^{2}+40w+45+5
Combine 34w and 6w to get 40w.
6w^{2}+40w+50
Add 45 and 5 to get 50.
5w^{2}+25w+9w+45+\left(w+1\right)\left(w+5\right)
Apply the distributive property by multiplying each term of 5w+9 by each term of w+5.
5w^{2}+34w+45+\left(w+1\right)\left(w+5\right)
Combine 25w and 9w to get 34w.
5w^{2}+34w+45+w^{2}+5w+w+5
Apply the distributive property by multiplying each term of w+1 by each term of w+5.
5w^{2}+34w+45+w^{2}+6w+5
Combine 5w and w to get 6w.
6w^{2}+34w+45+6w+5
Combine 5w^{2} and w^{2} to get 6w^{2}.
6w^{2}+40w+45+5
Combine 34w and 6w to get 40w.
6w^{2}+40w+50
Add 45 and 5 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}