Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. r
Tick mark Image

Similar Problems from Web Search

Share

5^{1}r^{2}s^{-2}\left(-2\right)^{1}r^{5}s^{2}
Use the rules of exponents to simplify the expression.
5^{1}\left(-2\right)^{1}r^{2}r^{5}s^{-2}s^{2}
Use the Commutative Property of Multiplication.
5^{1}\left(-2\right)^{1}r^{2+5}s^{-2+2}
To multiply powers of the same base, add their exponents.
5^{1}\left(-2\right)^{1}r^{7}s^{-2+2}
Add the exponents 2 and 5.
5^{1}\left(-2\right)^{1}r^{7}s^{0}
Add the exponents -2 and 2.
5^{1}\left(-2\right)^{1}r^{7}
For any number a except 0, a^{0}=1.
-10r^{7}
Multiply 5 times -2.
\frac{\mathrm{d}}{\mathrm{d}r}(5r^{7}s^{-2}\left(-2\right)s^{2})
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{\mathrm{d}}{\mathrm{d}r}(5r^{7}\left(-2\right))
Multiply s^{-2} and s^{2} to get 1.
\frac{\mathrm{d}}{\mathrm{d}r}(-10r^{7})
Multiply 5 and -2 to get -10.
7\left(-10\right)r^{7-1}
The derivative of ax^{n} is nax^{n-1}.
-70r^{7-1}
Multiply 7 times -10.
-70r^{6}
Subtract 1 from 7.